Abstract

Gas turbines are used in a broad range of aerospace and land-based applications from power generation to aviation, and their usage is projected to continue to grow. It is therefore critical to improve turbine efficiency thereby reducing fuel consumption and carbon emissions. Demonstration of new efficiency-increasing technologies requires efficiency measurements that are accurate and repeatable. The Steady Thermal Aero Research Turbine (START) Laboratory at the Pennsylvania State University uses a unique 360-deg traversing system for temperature and pressure probes with redundant torque measurements to quantify thermal efficiency for a single-stage cooled test turbine. Flows in the full annulus have been analyzed and compared with subsector traverse segments centered at different circumferential positions to determine the appropriate sector size. The results from this investigation indicate that the full 360-deg measurement is recommended to minimize variation in calculated stage efficiencies. This study also compares the circumferential variations in thermodynamic and mechanical efficiency definitions, finding that the thermodynamic efficiency calculation results in a higher accuracy for full exit plane measurements. A statistical analysis was then performed to determine the number of 360-deg traverse measurements required to achieve a precision uncertainty at most that of the bias uncertainty. This study establishes guidelines to streamline experimental procedures by limiting the necessary test count per day per operating condition to five measurements for at most four test days. Following these procedures establishes a bias of ɛb = 0.19 points, resulting in a total uncertainty of at most ɛt = 0.32 points.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
2.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
.
3.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2010
, “
Sensitivity of Turbine Efficiency and Flow Structures to Varying Purge Dlow
,”
J. Propul. Power
,
26
(
1
), pp.
46
56
.
4.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
5.
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2017
, “
Experimental Investigation of Turbine Stage Flow Field and Performance at Varying Cavity Purge Rates and Operating Speed
,”
ASME J. Turbomach.
,
140
(
3
), p.
031001
.
6.
Mohd Tobi
,
A. L.
, and
Ismail
,
A. E.
,
2016
, “
Development in Geared Turbofan Aeroengine
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
131
(
1
), pp.
1
10
.
7.
Sato
,
A.
,
Imamura
,
M.
, and
Fujimura
,
T.
,
2014
, “
Development of PW1100G-JM Turbofan Engine
,”
IHI Eng. Rev.
,
47
(
1
), pp.
23
28
.
8.
Young
,
J. B.
, and
Wilcock
,
R. C.
,
2002
, “
Modeling the Air-Cooled Gas Turbine: Part 1-General Thermodynamics
,”
ASME J. Turbomach.
,
124
(
2
), pp.
207
213
.
9.
Yoon
,
S.
,
Vandeputte
,
T.
,
Mistry
,
H.
,
Ong
,
J.
, and
Stein
,
A.
,
2016
, “
Loss Audit of a Turbine Stage
,”
ASME J. Turbomach.
,
138
(
5
), p.
051004
.
10.
Zimmermann
,
R.
,
Baar
,
R.
, and
Biet
,
C.
,
2016
, “
Determination of the Isentropic Turbine Efficiency Due to Adiabatic Measurements and the Validation of the Conditions via a New Criterion
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
232
(
24
), pp.
4485
4494
.
11.
Hudson
,
S. T.
, and
Coleman
,
H. W.
,
1997
, “
A Detailed Uncertainty Assessment of Measurements Used in Determining Turbine Efficiency
,”
AIAA Aerospace Sciences Meeting & Exhibit
,
Reno, NV
,
Jan. 6–9
.
12.
Louis
,
J. F.
,
Hiraoka
,
K.
,
Masri
,
E.
, and
A
,
M.
,
1985
, “
A Comparative Study of the Influence of Different Means of Cooling on the Performance of a Combined (Gas and Steam Turbine) Cycle
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
1
12
.
13.
Berdanier
,
R. A.
,
2023
, “
Calculating Cooled Turbine Efficiency With Weighted Cooling Flow Distributions
,”
ASME J. Turbomach.
,
145
(
6
), p.
061007
.
14.
Horlock
,
J. H.
, and
Torbidoni
,
L.
,
2008
, “
Calculations of Cooled Turbine Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011703
.
15.
Beard
,
P. F.
,
Povey
,
T.
, and
Chana
,
K. S.
,
2010
, “
Turbine Efficiency Measurement System for the QinetiQ Turbine Test Facility
,”
ASME J. Turbomach.
,
132
(
1
), p.
011002
.
16.
Neumayer
,
F.
,
Jericha
,
H.
,
Kulhanek
,
G.
,
Seyr
,
A.
,
Rossi
,
E.
, and
Sanz
,
W.
,
2002
, “
Performance Testing of a First and a Second Transonic Turbine Stage
,”
Proceedings of ASME Turbo Expo
,
Amsterdam, The Netherlands
,
June 3–6
.
17.
Porreca
,
L.
,
Behr
,
T.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Ehrhard
,
J.
, and
Janke
,
E.
,
2005
, “
Fluid Dynamics and Performance of Partially and Fully Shrouded Axial Turbines
,”
ASME J. Turbomach.
,
127
(
4
), pp.
668
678
.
18.
Kurzke
,
J.
,
2002
, “
Performance Modeling Methodology : Efficiency Definitions for Cooled Single and Multistage Turbines
,”
Proceedings of ASME Turbo Expo
,
Amsterdam, The Netherlands
,
June 3–6
.
19.
Young
,
J. B.
, and
Horlock
,
J. H.
,
2006
, “
Defining the Efficiency of a Cooled Turbine
,”
ASME J. Turbomach.
,
128
(
4
), pp.
658
667
.
20.
Seshadri
,
P.
,
Duncan
,
A.
,
Simpson
,
D.
,
Thorne
,
G.
, and
Parks
,
G.
,
2020
, “
Spatial Flow-Field Approximation Using Few Thermodynamic Measurements—Part II: Uncertainty Assessments
,”
ASME J. Turbomach.
,
142
(
2
), p.
021007
.
21.
Seshadri
,
P.
,
Simpson
,
D.
,
Thorne
,
G.
,
Duncan
,
A.
, and
Parks
,
G.
,
2020
, “
Spatial Flow-Field Approximation Using Few Thermodynamic Measurements—Part I: Formulation and Area Averaging
,”
ASME J. Turbomach.
,
142
(
2
), p.
021006
.
22.
Lou
,
F.
,
2022
, “
Approximating Gas Turbine Combustor Exit Temperature Distribution Factors Using Spatially Under-Sampled Measurements
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101018
.
23.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
Proceedings of ASME Turbo Expo 204: Turbine Technical Conference and Exposition
,
Duesseldorf, Germany
,
June 16–20
.
24.
Kline
,
S. J.
,
1985
, “
The Purposes of Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
153
160
.
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
26.
Phillips
,
S. D.
,
Eberhardt
,
K. R.
, and
Parry
,
B.
,
1997
, “
Guidelines for Expressing the Uncertainty of Measurement Results Containing Uncorrected Bias
,”
J. Res. Nat. Inst. Stand. Technol.
,
102
(
5
), pp.
577
585
.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
28.
Ferrero
,
A.
,
Larocca
,
F.
, and
Pennecchi
,
F. R.
,
2020
, “
Uncertainty Propagation in Field Inversion for Turbulence Modelling in Turbomachinery
,”
2020 IEEE 7Th International Workshop on Metrology for Aerospace
,
Pisa, Italy
,
June 2020
.
29.
Denos
,
R.
,
Paniagua
,
G.
,
Yasa
,
T.
, and
Fortugno
,
E.
,
2006
, “
Determination of the Efficiency of a Cooled HP Turbine in a Compression Tube Facility
,”
Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
.
30.
Haldeman
,
C. W.
,
Dunn
,
M.
,
Lotsof
,
J.
,
MacArthur
,
C.
, and
Cohrs
,
B.
,
1991
, “
Uncertainty Analysis of Turbine Aerodynamic Performance Measurements in Short Duration Test Facilities
,”
AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference
,
Sacramento, CA
,
June 24–26
.
31.
Keogh
,
R. C.
,
Guenette
,
G. R.
, and
Sommer
,
T. P.
,
2000
, “
Aerodynamic Performance Measurements of a Fully-Scaled Turbine in a Short Duration Facility
,”
Proceedings of ASME Turbo Expo
,
Munich, Germany
,
May 8–11
.
32.
Schobeiri
,
M. T.
,
Gilarranz
,
J. L.
, and
Johansen
,
E. S.
,
2000
, “
Aerodynamic and Performance Studies of a Three-Stage High Pressure Research Turbine With 3-d- Blades, Design Point and off-Design Experimental Investigations
,”
Proceedings of ASME Turbo Expo
,
Munich, Germany
,
May 8–11
.
33.
Atkins
,
N. R.
,
Miller
,
R. J.
, and
Ainsworth
,
R. W.
,
2004
, “
The Development of Aerodynamic Performance Measurements in a Transient Test Facility
,”
Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
.
34.
Figiola
,
R. S.
, and
Beasley
,
D. E.
,
2014
,
Theory and Design for Mechanical Measurements
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
35.
Stephens
,
J. E.
, and
Kulkarni
,
S.
,
2020
, “
Calibration of a V-Cone for Low Mass Flows for Small Core Compressor Research
,”
Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
Sept. 21–25
.
36.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properities-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
37.
ASME MFC-3M-2004
, “Measurement of Fluid Flow in Pipes Using Orifice, Nozzle, and Venturi.”
38.
Bulnes
,
F. K.
,
Kerr
,
T.
, and
Rimpel
,
A.
,
2022
, “
Calculating Windage Losses: A Review
,”
Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Rotterdam, The Netherlands
,
June 13–17
.
39.
Coren
,
D.
,
Childs
,
P. R. N.
, and
Long
,
C. A.
,
2009
, “
Windage Sources in Smooth-Walled Rotating Disc Systems
,”
J. Mech. Eng. Sci.
,
223
(
4
), pp.
873
888
.
40.
Robak
,
C. W.
,
Faghri
,
A.
, and
Thole
,
K. A.
,
2019
, “
Analysis of Gas Turbine Rim Cavity Ingestion with Axial Purge Flow Injection
,”
Proceedings of ASME Turbo Expo: Turbomachinery technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
41.
Aminossadati
,
S. M.
, and
Mee
,
D. J.
,
2013
, “
An Experimental Study on Aerodynamic Performance of Turbine Nozzle Guide Vanes With Trailing-Edge Span-Wise Ejection
,”
ASME J. Turbomach.
,
135
(
3
), p.
031002
.
42.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine Blade With Trailing Edge Coolant Ejection: Part 2- External Aerodynamics,Total Pressure Losses, and Predictions
,”
ASME J. Turbomach.
,
123
(
2
), pp.
249
257
.
You do not currently have access to this content.