Abstract

Current operational considerations require steam turbines to operate in a more flexible way, with more frequent and faster start-up and an increasing part-load operation. For very low mass flowrates, the interaction of highly separated flow with the high-speed rotor blades causes windage flow. This type of flow is characterized by increased temperature and highly unsteady flow, which forms vortex structures that rotate at a fraction of the rotor speed. If their magnitude is sufficiently high and the frequency is close to the blade eigenfrequency, non-synchronous vibration (NSV) can be induced. In this paper, low-flow turbine operation is investigated using a three-stage turbine rig that features an instrumentation concept focused on capturing aerodynamic and aeroelastic phenomena. Extensive steady probe, unsteady pressure, and tip-timing measurements are utilized. The experimental scope covers a wide range of operating points in terms of rotational speed and mass flowrates. Low-flow regimes are detected by a reversal in torque and increase in temperature. Unsteady measurements during transient operation identified large-scale vortical flow structures rotating along the circumference, so-called rotating instabilities (RIs). The onset, growth, and breakdown regimes of RI are characterized for different low-flow conditions. The quantitative characteristics of RI with regard to nodal diameter and rotational speed are derived by a cross-correlation of multiple unsteady sensors. The blade vibration measurements show a moderate structural response from unsteady aerodynamic excitation, indicating no significant NSV occurring in the present experimental setup. Later in the study, an acoustic excitation system has been applied to trigger a locked-in NSV without interrupting the coherent flow structures. From that, significant blade response has been observed, revealing a high degree of mistuning and damping of the rotor blading.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Evers
,
H. B.
,
1985
, “
Strömungsformen im Ventilationsbetrieb einer ein- und mehrstufigen Modellturbine
,” PhD thesis,
Leibniz Universität Hannover
,
Hanover
.
2.
Shnee
,
Y. L.
,
Ponomarev
,
V. N.
, and
Bystritskii
,
L. N.
,
1977
, “
Experimental Investigation of Partial Operation Conditions of Turbine Stages
,”
Energomashinostroenie
,
23
(
11
), pp.
10
14
.
3.
Baumgartner
,
M.
,
Kameier
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-engine Order Blade Vibration in a High Pressure Compressor
,”
Twelfth International Symposium on Airbreathing Engines
,
Melbourne, Australia
,
Sept. 10–15
.
4.
Brandstetter
,
C.
,
Ottavy
,
X.
,
Paoletti
,
B.
, and
Stapelfeldt
,
S.
,
2021
, “
Interpretation of Stall Precursor Signatures
,”
ASME J. Turbomach.
,
143
(
12
), p.
121011
.
5.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
6.
Pütz
,
O.
,
2022
, “
Prediction of Rotating Instabilities in Low Pressure Steam Turbines Operating at Low Load
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091007
.
7.
Megerle
,
B.
,
Rice
,
T. S.
,
McBean
,
I.
, and
Ott
,
P.
,
2013
, “
Numerical and Experimental Investigation of the Aerodynamic Excitation of a Model Low-Pressure Steam Turbine Stage Operating Under Low Volume Flow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012602
.
8.
Binner
,
M.
, and
Seume
,
J. R.
,
2014
, “
Flow Patterns in High Pressure Steam Turbines During Low-Load Operation
,”
ASME J. Turbomach.
,
136
(
6
), p.
061010
.
9.
Aschenbruck
,
J.
, and
Seume
,
J. R.
,
2015
, “
Experimentally Verified Study of Regeneration-Induced Forced Response in Axial Turbines
,”
ASME J. Turbomach.
,
137
(
3
), p.
031006
.
10.
Aschenbruck
,
J.
,
Meinzer
,
C. E.
,
Pohle
,
L.
,
Panning-von Scheidt
,
L.
, and
Seume
,
J. R.
,
2013
, “
Regeneration-Induced Forced Response in Axial Turbines
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
.
11.
Stania
,
L.
,
Ludeneit
,
F.
, and
Seume
,
J. R.
,
2022
, “
Experimental Investigation of the Sensitivity of Forced Response to Cold Streaks in an Axial Turbine
,”
16th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (ISUAAAT16)
,
Toledo, Spain
,
Sept. 19–23
.
12.
Zielinski
,
M.
, and
Ziller
,
G.
,
2000
, “
Noncontact Vibration Measurements on Compressor Rotor Blades
,”
Meas. Sci. Technol.
,
11
(
7
), p.
847
.
13.
Meinzer
,
C. E.
, and
Seume
,
J. R.
,
2020
, “
Experimental and Numerical Quantification of the Aerodynamic Damping of a Turbine Blisk
,”
ASME J. Turbomach.
,
142
(
12
), p.
121011
.
14.
Freund
,
O.
,
Bartelt
,
M.
,
Mittelbach
,
M.
,
Montgomery
,
M.
,
Vogt
,
D. M.
, and
Seume
,
J. R.
,
2013
, “
Impact of the Flow on an Acoustic Excitation System for Aeroelastic Studies
,”
ASME J. Turbomach.
,
135
(
3
), p.
031033
.
15.
Freund
,
O.
,
Montgomery
,
M.
,
Mittelbach
,
M.
, and
Seume
,
J. R.
,
2014
, “
Non-Contact Test Set-Up for Aeroelasticity in a Rotating Turbomachine Combining a Novel Acoustic Excitation System With Tip-Timing
,”
Meas. Sci. Technol.
,
25
(
3
), p.
035008
.
16.
Freund
,
O.
,
2015
, “
Akustische Anregung von Schaufelschwingungen in Turbomaschinen
,” Diss.,
Gottfried Wilhelm Leibniz Universität Hannover
,
Hannover
, xiv, 155.
17.
Meinzer
,
C. E.
,
2020
, “
Quantifizierung der aerodynamischen Dämpfung: Dissertation
,” PhD thesis,
Leibniz Universität Hannover
,
Hanover
.
18.
Kluge
,
T.
,
Lettmann
,
I.
,
Oettinger
,
M.
,
Wein
,
L.
, and
Seume
,
J. R.
,
2021
, “
Unsteady Flow Phenomena in Turbine Shroud Cavities
,”
J. Global Power Propul. Soc.
,
5
, pp.
177
190
.
You do not currently have access to this content.