Abstract

The endwall contouring has proven to be an effective technique in controlling the impacts of secondary flow within turbomachinery. A baseline cascade with the original axisymmetric endwall (BASE) has been redesigned with a non-axisymmetric contoured shroud endwall (EW-B1), and both configurations are investigated through experimental and numerical methods. The endwall is profiled through the B-spline surface method with the purpose of reducing the overall total pressure loss at the exit. The experimental studies involve flow field traverses at the exits of both cascades. Numerical calculations are conducted to gain a deeper understanding of the effects of endwall contouring. The numerical results exhibit good agreement with the experimental results, both in loss and flow angle. The results demonstrate a significant reduction in losses and secondary kinetic energy in EW-B1. The causes of the high-loss region and the overturning near the shroud are analyzed using computational fluid dynamics (CFD), as well as the changes in pressure fields and vortex structures within the cascade passage. The weakening of the horseshoe vortex and the radial movement of the passage vortex are confirmed to be the primary reasons for losses reduction.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Rose
,
M. G.
, “
Non-Axisymmetric Endwall Profiling in the HP NGV's of an Axial Flow Gas Turbine
,”
Proceedings of the ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, Volume 1: Turbomachinery
,
The Hague, Netherlands
,
June 13–16
, p.
V001T01A090
.
2.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
, and
Rose
,
M. G.
, “
Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, Volume 1: Turbomachinery
,
Stockholm, Sweden
,
June 2–5
, p.
V001T01A130
.
3.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
4.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.
5.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2003
, “
Improving the Efficiency of the Trent 500-HP Turbine Using Non-Axisymmetric End Walls—Part I: Turbine Design
,”
ASME J. Turbomach.
,
125
(
3
), pp.
497
504
.
6.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part II—Experimental Validation
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air, Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
New Orleans, LA
,
June 4–7
,
p. V001T03A081
.
7.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
, “
The Performance of a Generic Non-Axisymmetric End Wall in a Single Stage, Rotating Turbine at On and Off-Design Conditions
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
, pp.
1069
1080
.
8.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schüpbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part I: Endwall Design and Performance
,”
ASME J. Turbomach.
,
132
(
2
), p.
021007
.
9.
Schüpbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part II: Time-Resolved Flow Physics
,”
ASME J. Turbomach.
,
132
(
2
), p.
021008
.
10.
Poehler
,
T.
,
Gier
,
J.
, and
Jeschke
,
P.
, “
Numerical and Experimental Analysis of the Effects of Non-Axisymmetric Contoured Stator Endwalls in an Axial Turbine
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
, pp.
1549
1559
.
11.
Poehler
,
T.
,
Niewoehner
,
J.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2015
, “
Investigation of Nonaxisymmetric Endwall Contouring and Three-Dimensional Airfoil Design in a 1.5-Stage Axial Turbine—Part I: Design and Novel Numerical Analysis Method
,”
ASME J. Turbomach.
,
137
(
8
), p.
081009
.
12.
Niewoehner
,
J.
,
Poehler
,
T.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2015
, “
Investigation of Nonaxisymmetric Endwall Contouring and Three-Dimensional Airfoil Design in a 1.5 Stage Axial Turbine—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
137
(
8
), p.
081010
.
13.
Nagel
,
M. G.
, and
Baier
,
R.
,
2005
, “
Experimentally Verified Numerical Optimization of a Three-Dimensional Parametrized Turbine Vane With Nonaxisymmetric End Walls
,”
ASME J. Turbomach.
,
127
(
2
), pp.
380
387
.
14.
Guo
,
Z.
,
Bu
,
H.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2019
, “
Experimental Test of a 3D Parameterized Vane Cascade With Non-Axisymmetric Endwall
,”
Aerosp. Sci. Technol.
,
85
, pp.
429
442
.
15.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2013
, “
Application of Nonaxisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME J. Turbomach.
,
135
(
6
), p.
061006
.
16.
Burigana
,
M.
,
Verstraete
,
T.
, and
Lavagnoli
,
S.
,
2023
, “
Turbine Endwall Contouring Through Advanced Optimization Techniques
,”
ASME J. Turbomach.
,
145
(
8
), p.
081011
.
17.
Miyoshi
,
I.
,
Higuchi
,
S.
, and
Kishibe
,
T.
, “
Improving the Performance of a High Pressure Gas Turbine Stage Using a Profiled Endwall
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 6A: Turbomachinery
,
San Antonio, TX
,
June 3–7
, p.
V06AT36A027
.
18.
Reutter
,
O.
,
Hemmert-Pottmann
,
S.
,
Hergt
,
A.
, and
Nicke
,
E.
, “
Endwall Contouring and Fillet Design for Reducing Losses and Homogenizing the Outflow of a Compressor Cascade
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2A: Turbomachinery
,
Düsseldorf, Germany
,
June 16–20
, p.
V02AT37A007
.
19.
2015
,
FINETM/Turbo 10.1—User Manual
, NUMECA International,
Brussels, Belgium
.
20.
Bergh
,
J.
,
Snedden
,
G.
, and
Dunn
,
D.
,
2020
, “
Optimization of Non-Axisymmetric Endwall Contours for the Rotor of a Low Speed, 1.5-Stage Research Turbine With Unshrouded Blades—Optimization and Experimental Validation
,”
ASME J. Turbomach.
,
142
(
4
), p.
041006
.
21.
Krause
,
L. N.
, and
Dudzinski
,
T. J.
,
1969
, “
Flow-direction Measurement With Fixed Position Probes in Subsonic Flows Over a Range of Reynolds Number
,” NASA Report No. NASA TMX-52576.
22.
Liu
,
P.
,
2021
,
A General Theory of Fluid Mechanics
,
Springer
,
Singapore
, pp.
333
380
.
23.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1979
, “
The Calibration and Application of Five-Hole Probes
,”
ISA Trans.
,
18
(
3
), pp.
23
34
.
24.
Chen
,
Y.
,
Jiang
,
D.
,
Du
,
Z.
, and
Wang
,
S.
,
2023
, “
Experimental and Numerical Investigation of High Load Turbine Blade Tip Cavity Structures
,”
ASME J. Turbomach.
,
145
(
6
), p.
061008
.
25.
ANSYS CFX 14.0 Solver Theory Guide
,
2011
,
ANSYS Inc.
,
Canonsburg
.
26.
Wilcox
,
D. C.
,
1988
, “
Multiscale Model for Turbulent Flows
,”
AIAA J.
,
26
(
11
), pp.
1311
1320
.
27.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
28.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
29.
Rumsey
,
C. L.
, and
Thomas
,
J. L.
,
2008
, “
Application of FUN3D and CFL3D to the Third Workshop on CFD Uncertainty Analysis
,” NASA Report No. NASA TM-2008-215537.
30.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2006
,
Vorticity and Vortex Dynamics
,
Springer
,
Berlin, Heidelberg
, pp.
451
518
.
31.
Schittkowski
,
K.
,
2002
, “
NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm for Parallel Computing
,” Department of Mathematics, University of Bayreuth.
32.
McKay
,
M. D.
,
1992
, “
Latin Hypercube Sampling as a Tool in Uncertainty Analysis of Computer Models
,”
Proceedings of the 24th Conference on Winter Simulation
,
Arlington VI
,
Dec.
, pp.
557
564
.
33.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the 2nd Studying Turbulence Using Numerical Simulation Databases
,
Stanford, CA
,
Dec. 1
, pp.
193
208
.
You do not currently have access to this content.