Abstract

Internal cooling structures for gas turbine engines are becoming more complicated to push the hot gas temperature as high as possible, which, however, allows particulates drawn into the coolant air to be more readily to deposit within these passages and thus greatly affect their flow loss and thermal performance. In this study, internal swirl cooling and jet impingement cooling subjected to particulate deposition were evaluated and compared using a conjugate heat transfer method, with an emphasis on the thermal effects of the insulative deposits. To accomplish the goal, an unsteady conjugate mesh morphing simulation framework was developed and validated, which involved particle tracking in an unsteady fluid flow, particle–wall interaction modeling, conjugate mesh morphing of both fluid and solid domains, and a deposit identification method. The swirl and the jet impingement cooling configurations modeled the internal cooling passage for the leading-edge region of a turbine blade and were investigated in a dust-laden coolant environment at real engine conditions. Coupling effects between the dynamic deposition process and the unsteady flow inside the two cooling channels were examined and the insulative effects of the deposits were quantified by comparing the temperatures on the external and internal surfaces of the metal channel walls, as well as on the deposit layers. Results demonstrated the ability of the newly developed, unsteady conjugate simulation framework to identify the deposits from the original bare wall surface and to predict the insulation effects of the deposits in the dynamic deposition process. The dust almost covered the entire impingement channel, while deposits were only seen in the vicinity of the jets in the swirl channel. Despite this, a dramatical decrease of convection heat transfer was found in the swirl channel because the swirling flow was sensitive to the interruption of the deposits. In contrast, the deposits improved the heat transfer rate in the impingement channel. When the thermal effects of the deposit layer were taken into account, the wall temperatures of both two cooling geometries were substantially elevated, exceeding the allowable temperature of the metal material. Due to the denser deposit coverage, the impingement channel wall had a greater temperature increase than the swirl channel. In terms of flow loss, the presence of the deposits inhibited the swirl intensity by interrupting the swirling flow and thus reduced the friction loss, whereas the pressure loss was improved by the deposits in the impingement cooling.

References

1.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
2.
Bojdo
,
N.
, and
Filippone
,
A.
,
2014
, “
Effects of Desert Particulate Composition on Helicopter Engine Degradation Rate
,”
Proceedings of the 40th European Rotorcraft Forum
,
Southampton, UK
,
Sept. 2014
.
3.
Yang
,
X.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2022
, “
Particle Deposition Patterns on High-Pressure Turbine Vanes With Aggressive Inlet Swirl
,”
Chinese J. Aeronaut.
,
35
(
3
), pp.
75
89
.
4.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2007
, “
Effects of Particle Size, Gas Temperature and Metal Temperature on High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,” ASME Paper No. GT2007-27531.
5.
Richards
,
G. A.
,
Logan
,
R. G.
,
Meyer
,
C. T.
, and
Anderson
,
R. J.
,
1992
, “
Ash Deposition at Coal-Fired Gas Turbine Conditions: Surface and Combustion Temperature Effects
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
132
138
.
6.
Bons
,
J. P.
,
Lo
,
C.
,
Nied
,
E.
, and
Han
,
J.
,
2022
, “
The Effect of Gas and Surface Temperature on Cold-Side and Hot-Side Turbine Deposition
,”
ASME J. Turbomach.
,
144
(
12
), p.
121013
.
7.
Crowe
,
E. D.
, and
Bons
,
J. P.
,
2019
, “
Effects of Dust Composition on Particle Deposition in an Effusion Cooling Geometry
,” ASME Paper No. GT2019-91032.
8.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
9.
Prenter
,
R.
,
Whitaker
,
S. M.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2014
, “
The Effects of Slot Film Cooling on Deposition on a Nozzle Guide Vane
,” ASME Paper No. GT2014-27171.
10.
Yang
,
X.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2021
, “
Variations of Cooling Performance on Turbine Vanes Due to Incipient Particle Deposition
,”
IMechE, Part A: J. Power Energy
,
235
(
8
), pp.
1832
1846
.
11.
Whitaker
,
S. M.
,
Lundgreen
,
R. K.
, and
Bons
,
J. P.
,
2017
, “
Effects of Metal Surface Temperature on Deposition-Induced Flow Blockage in a Vane Leading Edge Cooling Geometry
,” ASME Paper No. GT2017-64946.
12.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2019
, “
Modeling Deposition in Turbine Cooling Passages With Temperature-Dependent Adhesion and Mesh Morphing
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071010
.
13.
Libertowski
,
N. D.
,
Geiger
,
G. M.
, and
Bons
,
J. P.
,
2020
, “
Modeling Deposit Erosion in Internal Turbine Cooling Geometries
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031024
.
14.
Clum
,
C.
,
Bokar
,
E.
,
Casaday
,
B.
, and
Bons
,
J. P.
,
2014
, “
Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane—Part I: Experimental Investigation
,” ASME Paper No. GT2014-27150.
15.
Lundgreen
,
R. K.
,
2017
, “
Pressure and Temperature Effects on Particle Deposition in an Impinging Flow
,” ASME Paper No. GT2017-64649.
16.
Nied
,
E. P.
,
Bons
,
J. P.
, and
Lundgreen
,
R. K.
,
2023
, “
Unpacking Intermineral Synergies and Reactions During Dust Deposition in an Impingement Coolant Jet
,”
ASME J. Turbomach.
,
145
(
5
), p.
051015
.
17.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,” ASME Paper No. GT2006-90067.
18.
Crowe
,
E. D.
, and
Bons
,
J. P.
,
2019
, “
Effects of Dust Composition on Particle Deposition in an Effusion Cooling Geometry
,” ASME Paper No. GT2019-91032.
19.
Varney
,
B.
,
Barker
,
B.
,
Bons
,
J.
,
Gnanaselvam
,
P.
, and
Wolff
,
T.
,
2021
, “
Fine Particulate Deposition in an Effusion Plate Geometry
,”
ASME J. Turbomach.
,
143
(
1
), p.
011001
.
20.
Wylie
,
S.
,
Bucknell
,
A.
,
Forsyth
,
P.
,
McGilvray
,
M.
, and
Gillespie
,
D. R. H.
,
2017
, “
Reduction in Flow Parameter Resulting From Volcanic Ash Deposition in Engine Representative Cooling Passages
,”
ASME J. Turbomach.
,
139
(
3
), p.
031008
.
21.
Land
,
C. C.
,
Joe
,
C.
, and
Thole
,
K. A.
,
2010
, “
Considerations of a Double-Wall Cooling Design to Reduce Sand Blockage
,”
ASME J. Turbomach.
,
132
(
3
), p.
031011
.
22.
Cardwell
,
N. D.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2010
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021020
.
23.
Wolff
,
T.
,
Bowen
,
C.
, and
Bons
,
J. P.
,
2018
, “
The Effect of Particle Size on Deposition in an Effusion Cooling Geometry
,” AIAA Paper No. AIAA-2018-0391.
24.
Cory
,
T.
,
Thole
,
K. A.
,
Kirsch
,
K. L.
,
Lundgreen
,
R.
,
Prenter
,
R.
, and
Kramer
,
S.
,
2019
, “
Impact of Dust Feed on Capture Efficiency and Deposition Patterns in a Double-Walled Liner
,” ASME GT2019-90981.
25.
Villain
,
F. Y.
,
Vadgama
,
N.
,
Gaskell
,
J. G.
,
Ireland
,
P. T.
,
McGilvray
,
M.
, and
Gillespie
,
D. R.
,
2022
, “
Numerical Investigation of Particle Deposition in Double Wall Effusion Cooled Systems
,” ASME Paper No. GT2022-81157.
26.
Singh
,
S.
, and
Tafti
,
D. K.
,
2016
, “
Prediction of Sand Transport and Deposition in a Two-Pass Internal Cooling Duct
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072606
.
27.
Dowd
,
C.
,
Tafti
,
D.
, and
Yu
,
K.
,
2017
, “
Sand Transport and Deposition in Rotating Two-Passed Ribbed Duct With Coriolis and Centrifugal Buoyancy Forces at Re = 100,000
,” ASME Paper No. GT2017-63167.
28.
Bowen
,
C. P.
, and
Bons
,
J. P.
,
2022
, “
Enhancing Turbine Deposition Prediction Capability With Conjugate Mesh Morphing
,”
ASME J. Turbomach.
,
144
(
6
), p.
061013
.
29.
Yang
,
X.
,
Hao
,
Z. H.
,
Seibold
,
F.
,
Feng
,
Z. P.
,
Ligrani
,
P.
, and
Weigand
,
B.
,
2023
, “
Particulate Deposition Effects on Internal Swirl Cooling of Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051020
.
30.
Dunn
,
M. G.
,
Padova
,
C.
,
Moller
,
J. E.
, and
Adams
,
R. M.
,
1987
, “
Performance Deterioration of a Turbofan and a Turbojet Engine Upon Exposure to a Dust Environment
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
336
343
.
31.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2005
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
(
3
), pp.
462
470
.
32.
Sacco
,
C.
,
Bowen
,
C.
,
Lundgreen
,
R.
,
Bons
,
J. P.
,
Ruggiero
,
E.
,
Allen
,
J.
, and
Bailey
,
J.
,
2018
, “
Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102605
.
33.
Murphy
,
R. G.
,
Nix
,
A. C.
,
Lawson
,
S. A.
,
Straub
,
D.
, and
Beer
,
S. K.
,
2012
, “
Preliminary Experimental Investigation of the Effects of Particulate Deposition on IGCC Turbine Film-Cooling in a High-Pressure Combustion Facility
,” ASME Paper No. GT2012-68806.
34.
Xu
,
H.
,
Liu
,
K.
, and
Fox
,
M.
,
2020
, “
Turbine Nozzle Insert Clogging With Seeded Medium Size Particles
,” ASME Paper No. GT2020-14522.
35.
Boulanger
,
A.
,
Hutchinson
,
J.
,
Ng
,
W. F.
,
Ekkad
,
S. V.
,
Keefe
,
M. J.
,
Xu
,
W.
,
Barker
,
B.
, and
Hsu
,
K.
,
2017
, “
Experimental Investigation of Sand Deposits on Hastelloy-X From 1000 °C to 1100 °C Using Particle Tracking
,” ASME Paper No. GT2017-64480.
36.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p.
021009
.
37.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2013
, “
Experimental Simulation of Contaminant Deposition on a Film-Cooled Turbine Vane Pressure Side With a Trench
,”
ASME J. Turbomach.
,
135
(
5
), p.
051008
.
38.
Yang
,
X.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2021
, “
An Experimental Study on Turbine Vane Leading-Edge Film Cooling With Deposition
,”
Appl. Therm. Eng.
,
198
, p.
117447
.
39.
Forsyth
,
P. R.
,
Gillespie
,
D. R. H.
, and
McGilvray
,
M.
,
2017
, “
Development and Applications of a Coupled Particle Deposition—Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022603
.
40.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2018
, “
EBFOG: Deposition, Erosion, and Detachment on High-Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
140
(
6
), p.
061001
.
41.
Paul
,
S.
,
Tafti
,
D.
, and
Yu
,
K.
,
2019
, “
A Multiphase Computational Framework for Deposit Formation and Growth
,” ASME Paper No. GT2019-90266.
42.
Biegger
,
C.
,
Rao
,
Y.
, and
Weigand
,
B.
,
2018
, “
Flow and Heat Transfer Measurements in Swirl Tubes With One and Multiple Tangential Inlet Jets for Internal Gas Turbine Blade Cooling
,”
Int. J. Heat Fluid Flow
,
73
, pp.
174
187
.
43.
Yang
,
X.
,
Seibold
,
F.
,
Feng
,
Z.
, and
Weigand
,
B.
,
2022
, “
Effects of Blade Lean on Internal Swirl Cooling at Turbine Blade Leading Edges
,”
Int. J. Heat Mass Transf.
,
194
, p.
123111
.
44.
Hamed
,
A.
, and
Tabakoff
,
W.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
AIAA J. Propuls. Power
,
22
(
2
), pp.
350
360
.
45.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.
46.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.
47.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
. ASME Paper No. GT2002-30600.
48.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2012
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041020
.
49.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
50.
Whitaker
,
S. M.
, and
Bons
,
J. P.
,
2022
, “
An Improved Particle Impact Model by Accounting for Rate of Strain and Stochastic Rebound
,”
ASME J. Turbomach.
,
145
(
1
), p.
011010
.
51.
Agati
,
G.
,
Borello
,
D.
,
Di Gruttola
,
F.
,
Simone
,
D.
,
Rispoli
,
F.
,
Castorrini
,
A.
,
Gabriele
,
S.
, and
Venturini
,
P.
,
2022
, “
Numerical Prediction of Long Term Droplet Erosion and Washing Efficiency of an Axial Compressors Through the Use of a Discrete Mesh Morphing Approach
,” ASME Paper No. GT2022-83033.
52.
Yang
,
X.
,
Seibold
,
F.
,
Feng
,
Z. P.
, and
Weigand
,
B.
,
2023
, “
Partial Blockage Effects on Turbine Blade Internal Swirl Cooling Due to Particle Deposition
,”
Proceedings of 15th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Budapest, Hungary
,
Apr. 24–28
, Paper No. ETC2023-152.
You do not currently have access to this content.