Abstract

As turbine inlet temperatures continue to increase for modern gas turbine engines, the lifing of hot section components operating in a range of environments is becoming increasingly challenging. Engine operations in harsh environments can cause a reduction in cooling capability leading to reduced blade life relative to existing experience. This study analyzes the effects of harsh environments on the deterioration of blade flow and cooling effectiveness in turbine blades by comparing three commercially operated engines with varied operational times referenced against a baseline blade. Spatially resolved surface temperatures measured using infrared thermography at high-speed rotating conditions were evaluated to determine variations in cooling effectiveness as a function of engine operation and blade-to-blade variability from the different commercial applications. Engine-run blades were found to have reduced flow as well as greater part-to-part variation when compared to baseline blades. Blade surface temperature measurements on the deteriorated operational blades indicated film cooling traces dissipated closer to the hole exit relative to baseline blades. Furthermore, the cooling effectiveness varied significantly even between blades from the same engines. The reduction in cooling effectiveness in the engine-run blades led to higher blade temperatures and significantly shorter component life, with some exhibiting as much as an 18% reduction in life compared to baseline blades. This knowledge allows lifing models to be developed toward predicting blade operational effects in harsh environments.

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2017-63205.
2.
Saravanamuttoo
,
H.
,
Rogers
,
G.
,
Cohen
,
H.
, and
Straznicky
,
P.
,
2009
,
Gas Turbine Theory
,
Pearson Education Limited
,
Harlow, UK
.
3.
Meher-Homji
,
C. B.
, and
Gabriles
,
G.
,
1998
, “
Gas Turbine Blade Failures—Causes, Avoidance, and Troubleshooting
,”
Proceedings of the 27th Turbomachinery Symposium
,
Houston, TX
, pp.
129
180
.
4.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
141
(
4
), p.
041018
.
5.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Wagner
,
J. H.
,
Thole
,
K. A.
,
Arisi
,
A. N.
, and
Haldeman
,
C. W.
,
2023
, “
Effects of Part-to-Part Flow Variations on Overall Effectiveness and Life of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
145
(
6
), p.
061016
.
6.
Hamed
,
A.
,
Tabakoff
,
W. C.
, and
Wenglarz
,
R. V.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.
7.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1996
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.
8.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
Proceedings of ASME Turbo Expo
, Paper No. GT-2001-0163.
9.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
Film Cooling Measurements on Cylindrical Models With Simulated Thermal Barrier Coating Spallation
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
194
200
.
10.
Ekkad
,
S.
, and
Han
,
J.-C.
,
1997
, “
Detailed Heat Transfer Distributions on a Cylindrical Model With Simulated TBC Spallation
,”
Proceedings of the 35th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan 6–9
, pp.
97
0595
.
11.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p.
021009
.
12.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling
,”
ASME J. Turbomach
,
129
(
3
), pp.
599
607
.
13.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows at High Temperatures in Gas Turbine Components
,”
Int. J. Heat Fluid Flow
,
52
, pp.
72
83
.
14.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
15.
DeShong
,
E. T.
,
Berdanier
,
R. A.
, and
Thole
,
K. A.
,
2023
, “
Predictive Modeling of Local Film-Cooling Flow on a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
145
(
4
), p.
041014
.
16.
Bunker
,
R. S.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,”
Proceedings of ASME Turbo Expo
, Paper No. GT-2000-0244.
17.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
18.
Ramirez Velasco
,
J. H.
,
Petrosky
,
K.
,
Kilaz
,
G.
,
Kenttämaa
,
H.
, and
Trice
,
R. W.
,
2021
, “
Thermochemical Interaction of Biofuel Impurities With Yttria-Stabilized Zirconia Thermal Barrier Coatings
,”
Ceram. Int.
,
47
(
17
), pp.
24675
24682
.
19.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M.
,
Nieto
,
A.
,
Bravo
,
L.
,
Barnett
,
B.
,
Pepi
,
M.
, et al
,
2017
, “
Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2017-64051.
20.
Mund
,
M. G.
, and
Guhne
,
H.
,
1970
, “
Gas Turbines—Dust—Air Cleaners: Experience and Trends
,”
Proceedings of ASME Gas Turbine Conference
, Paper No. 70-GT-104.
21.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M. J.
,
Barnett
,
B. B.
,
Pepi
,
M. S.
, and
Kerner
,
K. A.
,
2017
, “
Sand Particle-Induced Deterioration of Thermal Barrier Coating on Gas Turbine Blades
,”
Adv. Aircr. Spacecr. Sci.
,
4
(
1
), pp.
37
52
.
22.
Sidwell
,
V.
, and
Darmofal
,
D.
,
2003
, “
Probabilistic Analysis of a Turbine Cooling Air Supply System: The Effect on Airfoil Oxidation Life
,”
Proceedings of ASME Turbo Expo
, Paper No. GT-2003-38119.
23.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
24.
Han
,
J.-C.
, and
Wright
,
L. M.
,
2007
, “Enhanced Internal Cooling of Turbine Blades and Vanes,”
Gas Turbine Handbook
,
Department of Energy, National Energy Technology Laboratory
,
Morgantown, WV
, pp.
321
352
.
25.
Bunker
,
R. S.
,
Dees
,
J. E.
, and
Palafox
,
P.
,
2014
, “Impingement Cooling in Gas Turbines: Design, Applications, and Limitations,”
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Southampton, UK
, pp.
1
32
.
26.
Reyhani
,
M. R.
,
Alizadeh
,
M.
,
Fathi
,
A.
, and
Khaledi
,
H.
,
2013
, “
Turbine Blade Temperature Calculation and Life Estimation—A Sensitivity Analysis
,”
Propuls. Power Res.
,
2
(
2
), pp.
148
161
.
27.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
Energy Efficient Engine High Pressure Turbine Test Hardware Detailed Design Report
,” NASA Report No. CR-17955.
28.
Lemieux
,
D. H.
,
2005
, “
On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization
,” US Department of Energy Technical Report.
29.
Markham
,
J.
,
Cosgrove
,
J.
,
Scire
,
J.
,
Haldeman
,
C.
, and
Agoos
,
I.
,
2014
, “
Aircraft Engine-Mounted Camera System for Long Wavelength Infrared Imaging of In-Service Thermal Barrier Coated Turbine Blades
,”
Rev. Sci. Instrum.
,
85
(
12
), p.
124902
.
30.
Sisti
,
M.
,
Falsetti
,
C.
,
Beard
,
P.
, and
Chana
,
K.
,
2021
, “
Infrared Temperature Measurements on High Pressure Turbine Blades in the Oxford Turbine Research Facility: Calibration and Image Processing Techniques
,”
Proceedings of the 14th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Gdansk, Poland
,
Apr. 12–16
.
31.
Christensen
,
L.
,
Celestina
,
R.
,
Sperling
,
S.
,
Mathison
,
R.
,
Aksoy
,
H.
, and
Liu
,
J.
,
2020
, “
Infrared Temperature Measurements of the Blade Tip for a Turbine Operating at Corrected Engine Conditions
,”
ASME J. Turbomach.
,
143
(
10
), p.
101005
.
32.
Lazzi Gazzini
,
S.
,
Schädler
,
R.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2017
, “
Infrared Thermography With Non-Uniform Heat Flux Boundary Conditions on the Rotor Endwall of an Axial Turbine
,”
Meas. Sci. Technol.
,
28
(
2
), pp.
025901
.
33.
Michaud
,
M.
,
Chowdhury
,
N.
, and
Povey
,
T.
,
2023
, “
Experimental Study of Impact of In-Service Deterioration on Thermal Performance of High-Pressure Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
145
(
2
), p.
021014
.
34.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
Proceedings of ASME Turbo Expo
, Paper No. GT-2014-25570.
35.
Berdanier
,
R. A.
,
Monge-Concepción
,
I.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Grover
,
E. A.
,
2019
, “
Scaling Sealing Effectiveness in a Stator–Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
36.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Haldeman
,
C. W.
,
Markham
,
J. R.
,
Cosgrove
,
J. E.
,
Carlson
,
A. E.
, and
Scire
,
J. J.
,
2021
, “
Acquisition and Processing Considerations for Infrared Images of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
143
(
4
), p.
041013
.
37.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.