Abstract

Unsteady blade row interaction (UBRI) has a large impact on performance in high-speed axial compressors. Thus, the influence of UBRI should be accurately predicted in compressor routine design. In this study, the unsteady rotor–stator interaction in a transonic single-stage compressor, NASA Stage 35, is studied by steady and unsteady Reynolds-Averaged Navier–Stokes methods. First, the UBRI is analyzed. Periodic separation bubbles on the stator suction surface induced by the rotor wake are observed. Comparisons between steady and unsteady results show that the radial distribution of flow angle near the hub and tip region of the stator is strongly influenced by UBRI. Second, deterministic correlations are analyzed based on the average-passage equation system. The distribution of deterministic stress and the relationship between spatial correlations and deterministic correlations are analyzed. Results show that a strong nonlinear interaction caused by the rotor wake and the stator potential field is found in the rotor–stator gap, which is responsible for the generation of spatial–time correlation. Then, the anisotropy of deterministic correlations is analyzed using the Lumley triangle. Results show that the deterministic stress is highly anisotropic in the stator passage, which can be considered in the modeling using a similar strategy of turbulence modeling. At last, the relationships between the harmonics and decay rate of deterministic correlations are analyzed. The decay rate of deterministic correlation is highly related to the corresponding harmonics, and the higher-order harmonic exhibits a higher decay rate. A modified exponential decay model is proposed for deterministic correlation based on harmonics, which provides improved performance.

References

1.
Lefcort
,
M. D.
,
1965
, “
An Investigation Into Unsteady Blade Forces in Turbomachines
,”
J. Eng. Gas Turbines Power
,
87
(
4
), pp.
345
354
.
2.
Smith
,
L. H.
, Jr.
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.
3.
Van Zante
,
D. E.
,
1997
, “
Study of a Wake Recovery Mechanism in a High-Speed Axial Compressor Stage
,” Ph.D. thesis, Iowa State University, Ames, IA.
4.
Adkins
,
G. G.
, and
Smith
,
L. H.
,
1982
, “
Spanwise Mixing in Axial-Flow Turbomachines
,”
J. Eng. Power
,
104
(
1
), pp.
97
110
.
5.
Graf
,
M. B.
,
Greitzer
,
E. M.
,
Marble
,
F. E.
, and
Sharma
,
O. P.
,
1999
, “
Effects of Stator Pressure Field on Upstream Rotor Performance
,”
Proceedings of the ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Indianapolis, IN
,
June 7–10
, ASME Paper No. 99-GT-099.
6.
Smith
,
N. R.
, and
Key
,
N. L.
,
2018
, “
A Comprehensive Investigation of Blade Row Interaction Effects on Stator Loss Utilizing Vane Clocking
,”
ASME J. Turbomach.
,
140
(
7
), p.
071004
.
7.
Przytarski
,
P. J.
, and
Wheeler
,
A. P. S.
,
2020
, “
The Effect of Gapping on Compressor Performance
,”
ASME J. Turbomach.
,
142
(
12
), p.
121006
.
8.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
9.
He
,
L.
,
1996
, “
Modeling Issues for Computation of Unsteady Turbomachinery Flows
,” Unsteady Flows in Turbomachines, von Karman Inst. Lecture Series, 5.
10.
Rai
,
M.
,
1987
, “
Navier-Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids
,”
J. Propul. Power
,
3
(
5
), pp.
387
396
.
11.
Giles
,
M. B.
,
1988
, “
UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery
,” Technical Report 195, MIT Gas Turbine Laboratory.
12.
Adamczyk
,
J. J.
,
1985
, “
Model Equation for Simulation Flows in Multistage Turbomachinery
,” ASME Paper No. 85-GT-226.
13.
Suryavamshi
,
N.
,
Lakshminarayana
,
B.
, and
Prato
,
J.
,
1998
, “
Steady and Unsteady Three-Dimensional Flow Field Downstream of an Embedded Stator in a Multi-Stage Axial Flow Compressor Part III: Deterministic Stress and Heat Flux Distribution and Average-Passage Equation System
,” ASME Paper No. 98-GT-523.
14.
Adamczyk
,
J. J.
,
1999
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
15.
Adamczyk
,
J. J.
,
1996
, “
Wake Mixing in Axial Flow Compressors
,” ASME Paper No. 98-GT-29.
16.
Uzol
,
O.
,
Chow
,
Y.-C.
,
Katz
,
J.
, and
Meneveau
,
C.
,
2003
, “
Average Passage Flow Field and Deterministic Stresses in the Tip and Hub Regions of a Multistage Turbomachine
,”
ASME J. Turbomach.
,
125
(
4
), pp.
714
725
.
17.
Arnaud
,
D.
,
Ottavy
,
X.
, and
Vouillarmet
,
A.
,
2004
, “
Experimental Investigation of the Rotor-Stator Interactions Within a High-Speed, Multi-Stage, Axial Compressor: Part 2—Modal Analysis of the Interactions
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air
, ASME Paper No. GT2004-53778.
18.
Liu
,
Y.
,
Liu
,
B.
, and
Lu
,
L.
,
2012
, “
Study of Modeling Unsteady Blade Row Interaction in a Transonic Compressor Stage-Part 1: Code Development and Deterministic Correlation Analysis
,”
Acta Mech. Sin.
,
28
(
2
), pp.
281
290
.
19.
Liu
,
Y.
,
Liu
,
B.
, and
Lu
,
L.
,
2012
, “
Study of Modeling Unsteady Blade Row Interaction in a Transonic Compressor Stage-Part 2: Influence of Deterministic Correlations on Time-Averaged Flow Prediction
,”
Acta Mech. Sin.
,
28
(
2
), pp.
291
299
.
20.
Liu
,
Y.
,
Liu
,
B.
, and
Lu
,
L.
,
2010
, “
Investigation of Unsteady Impeller-Diffuser Interaction in a Transonic Centrifugal Compressor Stage
,” ASME Paper No. GT2010-22737.
21.
Liu
,
B.
,
Zhang
,
B.
, and
Liu
,
Y.
,
2014
, “
Numerical Investigations of Impeller–Diffuser Interactions in a Transonic Centrifugal Compressor Stage Using Nonlinear Harmonic Method
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
228
(
8
), pp.
862
877
.
22.
Liu
,
B.
,
Zhang
,
B.
, and
Liu
,
Y.
,
2015
, “
Investigation of Model Development for Deterministic Correlations Associated With Impeller-Diffuser Interactions in Centrifugal Compressors
,”
Sci. China Technol. Sci.
,
58
(
3
), pp.
499
509
.
23.
Yamada
,
K.
,
Kubo
,
K.
,
Iwakiri
,
K.
,
Ishikawa
,
Y.
, and
Higashimori
,
H.
,
2021
, “
Unsteady Effects of Blade Row Interaction on Flow Field and Aerodynamic Performance of a Transonic Centrifugal Compressor Impeller
,” ASME Paper No. GT2021-59462.
24.
Wang
,
F.
,
Carnevale
,
M.
, and
di Mare
,
L.
,
2018
, “
Numerical Study of Deterministic Fluxes in Compressor Passages
,”
ASME J. Turbomach.
,
140
(
10
), p.
101005
.
25.
Adamczyk
,
J. J.
,
Mulac
,
R. A.
, and
Celestina
,
M. L.
,
1986
, “
A Model for Closing the Inviscid Form of the Average-Passage Equation System
,”
ASME J. Turbomach.
,
108
(
2
), pp.
180
186
.
26.
Rhie
,
C. M.
,
Gleixner
,
A. J.
,
Spear
,
D. A.
,
Fischberg
,
C. J.
, and
Zacharias
,
R. M.
,
1998
, “
1995 ASME Gas Turbine Award Paper: Development and Application of a Multistage Navier–Stokes Solver: Part I—Multistage Modeling Using Bodyforces and Deterministic Stresses
,”
ASME J. Turbomach.
,
120
(
2
), pp.
205
214
.
27.
Van de Wall
,
A. G.
,
Kadambi
,
J. R.
, and
Adamczyk
,
J. J.
,
2000
, “
A Transport Model for the Deterministic Stresses Associated With Turbomachinery Blade Row Interactions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
593
603
.
28.
Charbonnier
,
D.
, and
Leboeuf
,
F.
,
2004
, “
Steady Flow Simulation of Rotor-Stator Interactions With a New Unsteady Flow Model
,” AIAA Paper No. 2004-3754.
29.
Stollenwerk
,
S.
, and
Kügeler
,
E.
,
2013
, “
Deterministic Stress Modeling for Multistage Compressor Flowfields
,” ASME Paper GT2013-94860.
30.
Galbraith
,
M.
, and
Orkwis
,
P.
,
2008
, “
Transport Equation for Deterministic Stresses
,” AIAA Paper No. 2008-564.
31.
Lukovic
,
B.
,
Gangwar
,
A.
, and
Orkwis
,
P.
,
2001
, “
Modeling Unsteadiness in Steady Cavity Simulations. II—Neural Network Modeling
,”
Proceedings of the 39th Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2001-154.
32.
Liu
,
Y.
,
Tang
,
Y.
,
Liu
,
B.
, and
Lu
,
L.
,
2019
, “
An Exponential Decay Model for the Deterministic Correlations in Axial Compressors
,”
ASME J. Turbomach.
,
141
(
2
), p.
021005
.
33.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
34.
Lumley
,
J. L.
, and
Newman
,
G. R.
,
1977
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
82
(
1
), pp.
161
178
.
35.
Hamilton
,
N.
, and
Cal
,
R. B.
,
2015
, “
Anisotropy of the Reynolds Stress Tensor in the Wakes of Wind Turbine Arrays in Cartesian Arrangements With Counter-Rotating Rotors
,”
Phys. Fluids
,
27
(
1
), p.
015102
.
36.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Performance of Single-Stage Axial-Flow Transonic Compressor with Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82
,” NASA Technical Paper No. 1338.
37.
Xie
,
Z.
,
2020
, “
Numerical Investigation of Compressor's Stability Prediction and Relevant Flow Mechanisms
,”
Ph.D. thesis, Beihang University, China
.
38.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.
You do not currently have access to this content.