Abstract

This paper investigates the importance of nonequilibrium boundary-layer modeling for three compressor blade geometries, using RANS and high-fidelity simulations. We find that capturing nonequilibrium effects in RANS is crucial to capturing the correct boundary-layer loss. This is because the production of turbulence within the nonequilibrium region affects both the loss generation in the nonequilibrium region, but also the final equilibrium state. We show that capturing the correct nonequilibrium behavior is possible by adapting industry standard models (in this case the k–ω SST model). We show that for the range of cases studied here, nonequilibrium effects can modify the trailing-edge momentum thickness by up to 40% and can change the trailing-edge shape factor from 1.8 to 2.1.

References

1.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer
,
Berlin/Heidelberg
.
2.
Wheeler
,
A. P. S.
,
Dickens
,
A. M. J.
, and
Miller
,
R. J.
,
2017
, “
The Effect of Non-equilibrium Boundary Layers on Compressor Performance
,” ASME Paper No. GT2017-64635,
ASME
.
3.
Coles
,
D.
, and
Hirst
,
E.
,
1968
, “
Computation of Turbulent Boundary Layers
,”
AFOSR-IFP-Stanford Conference
,
Stanford, CA
, Aug. 18–23.
4.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2014
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines— Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
5.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bhaskaran
,
R.
,
2016
, “
Investigation of the Accuracy of RANS Models to Predict the Flow Through a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
138
(
12
), p.
121009
.
6.
Weatheritt
,
J.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
Machine Learning for Turbulence Model Development Using a High-Fidelity HPT Cascade Simulation
,” ASME Paper No. GT2017-63497,
ASME
.
7.
Monier
,
J.-F.
,
Poujol
,
N.
,
Gao
,
F.
,
Boudet
,
J.
,
Aubert
,
S.
, and
Shao
,
L.
,
2018
, “
LES Investigation of Boussinesq Contitutive Relation Validity in a Corner Separation Flow
,” ASME Paper No. GT2018-75792,
ASME
.
8.
Wheeler
,
A. P. S.
,
Dickens
,
A. M. J.
, and
Miller
,
R. J.
,
2018
, “
The Effect of Nonequilibrium Boundary Layers on Compressor Performance
,”
ASME J. Turbomach.
,
140
(
10
), p.
101003
.
9.
Przytarski
,
P. J.
, and
Wheeler
,
A. P.
,
2018
, “
Accurate Prediction of Loss Using High Fidelity Methods
,” ASME Paper No. GT2018-77125,
ASME
.
10.
Przytarski
,
P. J.
, and
Wheeler
,
A. P. S.
,
2020
, “
The Effect of Gapping on Compressor Performance
,”
ASME J. Turbomach.
,
142
(
12
), p.
121006
.
11.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
12.
Philips
,
L.
, and
Fyfe
,
D.
,
2011
, “Turbid: A Routine for Generating Random Turbulent Inflow Data,” Technical Report, Naval Research Laboratory, Washington, DC.
13.
Zaki
,
T.
,
Wissink
,
J.
,
Durbin
,
P.
, and
Rodi
,
W.
,
2009
, “
Direct Computations of Boundary Layers Distorted by Migrating Wakes in a Linear Compressor Cascade
,”
Flow Turbulence Combust.
,
83
(
3
), pp.
307
322
.
14.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
.
15.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
16.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat Mass Trans.
,
4
(
1
), pp.
625
632
.
17.
Leggett
,
J.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Richardson
,
E.
,
2018
, “
Loss Prediction in an Axial Compressor Cascade at Off-Design Incidences With Free Stream Disturbances Using Large Eddy Simulation
,”
ASME J. Turbomach.
,
140
(
7
), p.
071005
.
18.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2019
, “
Large Eddy Simulation of Boundary Layer Transition Mechanisms in a Gas-Turbine Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
6
), p.
061008
.
19.
Green
,
J.
,
Weeks
,
D.
, and
Brooman
,
J.
,
1973
, “Prediction of Turbulent Boundary Layers and Wakes in Compressible Flow by a Lag-Entrainment Method,” Technical Report, RAE.
20.
Drela
,
M.
,
1986
, “Two-Dimensional Transonic Aerodynamic Design and Analysis Using the Euler Equations,” Ph.D. thesis, Massachusetts Institute of Technology.
21.
Bradshaw
,
P.
,
Ferriss
,
D. H.
, and
Atwell
,
N. P.
,
1967
, “
Calculation of Boundary-Layer Development Using the Turbulent Energy Equation
,”
J. Fluid Mech.
,
28
(
3
), pp.
593
616
.
22.
Townsend
,
A.
,
1980
,
The Structure of Turbulent Shear Flow
,
Cambridge University Press
,
Cambridge
.
23.
Johnson
,
D. A.
, and
King
,
L. S.
,
1985
, “
A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers
,”
AIAA J.
,
23
(
11
), pp.
1684
1692
.
24.
Hellsten
,
A.
,
1998
, “
Some Improvements in Menter’s k-Omega SST Turbulence Model
,”
29th AIAA Fluid Dynamics Conference
,
Albuquerque, NM
,
June 15–18
, p.
2554
.
25.
Dixon
,
S. L.
, and
Hall
,
C.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford
.
You do not currently have access to this content.