Abstract

A secondary flow system with a dominant passage vortex pattern has been observed in many gas turbine vane passage studies in which there is no upstream coolant injection or only near-passage endwall coolant injection (no combustor cooling). However, it was shown in recent studies that combustor coolant introduced upstream of the vane passage changes secondary flow patterns in the passage. This results in a different secondary flow vortex system, called the “impingement vortex” system. It was discussed in recent literature having combustor coolant injection. Until now, there has been no study on how increases in combustor coolant momentum effect transition from the passage vortex system to the impingement vortex system. Such a study is presented in the present paper. Velocity component measurements are taken using a five-hole probe at three axial locations in the vane passage to document secondary flow development throughout the passage. Four combustor coolant flowrate cases are considered along with a comparison case having no coolant injection. It is shown that as the combustor coolant flowrate increases, the passage vortex system weakens and, at a sufficiently high combustor coolant flowrate, the impingement vortex system appears. Knowing the detailed flow physics of this transition between the two secondary flow systems is helpful for turbine thermal designers who wish to understand how secondary flows transport coolant within the turbine vane passage.

References

1.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.
2.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
3.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
4.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
,
1975
, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,” ASME Paper No. 75-WA/GT-13.
5.
Kopper
,
F. C.
,
Milanot
,
R.
, and
Vancot
,
M.
,
1981
, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
,
19
(
8
), pp.
1033
1040
.
6.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
(
4
), pp.
659
666
.
7.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
J. Heat Transfer
,
96
(
4
), pp.
524
529
.
8.
Sieverding
,
C. H.
, and
Wilputte
,
P.
,
1981
, “
Influence of Mach Number and Endwall Cooling on Secondary Flows in a Straight Nozzle Cascade
,”
J. Eng. Power
,
103
(
2
), pp.
257
263
.
9.
Goldman
,
L. J.
, and
McLallin
,
K. L.
,
1977
, “
Effect of Endwall Cooling on Secondary Flows in Turbine Stator Vanes
,”
AGARD, CPP-214.
10.
Biesinger
,
T. E.
, and
Gregory-Smith
,
D. G.
,
1993
, “
Reduction in Secondary Flows and Losses in a Turbine Cascade by Upstream Boundary Layer Blowing
,”
Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, Vol. 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Cincinnati, OH
,
May 24–27
,
p. V001T03A055
.
11.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part I—Flowfield Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air, Vol. 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Munich, Germany
,
May 8–11
,
p. V003T01A007
.
12.
El-Gabry
,
L. A.
,
Saha
,
R.
,
Fridh
,
J.
, and
Fransson
,
T.
,
2015
, “
Measurements of Hub Flow Interaction on Film Cooled Nozzle Guide Vane in Transonic Annular Cascade
,”
ASME J. Turbomach.
,
137
(
8
), p.
081004
.
13.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
.
14.
Colban
,
W. F.
,
Lethander
,
A. T.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
203
209
.
15.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwall—Part 1: Aerodynamics
,”
ASME J. Turbomach.
,
143
(
12
), p.
121009
.
16.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls—Part 2: Thermal Measurements
,”
ASME J. Turbomach.
,
143
(
12
), p.
121010
.
17.
Nawathe
,
K. P.
,
Zhu
,
R.
,
Lin
,
E.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Nozzle Passage Endwall Effectiveness Values With Various Combustor Coolant Flowrates—Part 1: Flowfield Velocity and Coolant Concentration Measurements
,”
ASME J. Turbomach.
,
143
(
4
), p.
041009
.
18.
Burd
,
S. W.
,
1998
, “
Secondary Flow and Heat Transfer Control in Gas Turbine Inlet Nozzle Guide Vanes
,” Ph.D. thesis,
University of Minnesota
,
Minneapolis, MN
.
19.
Oke
,
R.
,
2001
, “
Measurements in a Gas Turbine First Stage Nozzle Guide Vane Cascade With Film Cooling and Endwall Contouring
,” Ph.D. thesis,
University of Minnesota
,
Minneapolis, MN
.
20.
Piggush
,
J. D.
,
2005
, “
An Experimental Investigation of Endwall Leakage Flows and Misalignment in Gas Turbine Nozzle Guide Vane
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.
21.
Erickson
,
R. D.
,
2010
, “
Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.
22.
Ayaskanta
,
A.
,
2013
, “
Experimental Investigation of the Effect of Engine Representative Combustor Exit Temperature Profile and Disc Cavity Leakage Flow on the Film Cooling of Contoured Hub Endwall of a High Pressure Gas Turbine Rotor Cascade
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.
23.
Saxena
,
R.
,
2015
, “
Experimental Cascade Simulation of First Stage High Pressure Gas Turbine With Effects of Leakage Flow and Contouring on Endwall Film Cooling
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.
24.
Alqefl
,
M. H.
,
2016
, “
An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane With Slot Film Cooling
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.
25.
Alqefl
,
M. H.
,
2019
, “
Aero-Thermal Aspects of Endwall Cooling Flows in a Gas Turbine Nozzle Guide Vane
,” Ph.D. thesis,
University of Minnesota
,
Minneapolis, MN
.
26.
Nawathe
,
K. P.
,
2019
, “
Experiments on Film Cooling of Gas Turbine Vane Passage Surfaces: The Effects of Various Distributions of Combustor Coolant and Endwall Injection Coolant
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.
27.
Nawathe
,
K. P.
,
Nath
,
A. R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2022
, “
Turbine Vane Passage Cooling Experiments With a Close-Coupled Combustor-Turbine Interface Geometry Part 1: Describing the Flow
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Volume 6A: Heat Transfer—Combustors; Film Cooling, Rotterdam
,
Rotterdam, The Netherlands
,
June 13–17
,
p. V06AT12A008
.
28.
Nawathe
,
K. P.
,
Nath
,
A. R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2022
, “
Turbine Vane Passage Cooling Experiments With a Close-Coupled Combustor-Turbine Interface Geometry Part 2: Describing the Coolant Coverage
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Volume 6A: Heat Transfer—Combustors; Film Cooling, Rotterdam
,
Rotterdam, The Netherlands
,
June 13–17
,
p. V06AT12A023
.
29.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1978
, “
The Calibration and Application of Five-Hole Probes
,”
Proceedings of the 24th International Instrumentation Symposium, Part 1
,
Albuquerque, NM
,
May 1–5
.
30.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
31.
Ames
,
F. E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.
32.
Kang
,
M. B.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
(
3
), pp.
458
466
.
You do not currently have access to this content.