Abstract

In the turbine section of a modern gas turbine engine, components exposed to the main gas path flow rely on cooling air to maintain hardware durability targets. Therefore, monitoring turbine cooling flow is essential to the diagnostic and prognostic efficacy of a condition-based operation and maintenance (CBOM) approach. This study supports CBOM goals by leveraging supervised machine learning to estimate relative changes to local film-cooling flowrate using surface temperature measured on the pressure side of a rotating turbine blade operating at engine-relevant aerothermal conditions. Throughout the lifetime of a film-cooled turbine component, characteristics of the film-cooling flow—such as film trajectory and cooling effectiveness—vary as degradation-driven geometry distortions occur, which ultimately affects the relationship between the model input and the model output—film-cooling flowrate predictions. The present study addresses this complication by testing a data-driven model on multiple turbine blades of the same nominal design, but with each blade exhibiting different localized film-cooling flow characteristics. By testing the model in this manner, strategies for mitigating the detrimental effects of film-cooling flow characteristic variations on model performance were investigated, and the corresponding flowrate prediction accuracy was quantified.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
249
270
.
2.
Koff
,
B. L.
,
2004
, “
Gas Turbine Technology Evolution: A Designer’s Perspective
,”
J. Propuls. Power
,
20
(
4
), pp.
577
595
.
3.
Meher-Homji
,
C. B.
, and
Gabriles
,
G.
,
1998
, “
Gas Turbine Blade Failures—Causes, Avoidance, and Troubleshooting
,”
Proceedings of the 27th Turbomachinery Symposium
,
College Station, TX
, pp.
129
180
.
4.
Crow
,
D. E.
,
Tresa
,
P. M.
,
Bradshaw
,
S.
,
Foust
,
M. J.
,
Graham
,
B.
,
Gulen
,
J.
,
James
,
A.
, et al
,
2020
,
Advanced Technology for Gas Turbines
,
The National Academies Press
, p.
5
.
5.
2017
, “
Agilis
,” Agilis Measurement System Inc., https://agilismeasurementsystems.com/
6.
Mathioudakis
,
K.
,
Papathanasiou
,
A.
,
Loukis
,
E.
, and
Papailiou
,
K.
,
1991
, “
Fast Response Wall Pressure Measurement as a Means of Gas Turbine Blade Fault Identification
,”
ASME J. Eng. Gas Turbines Power
,
113
(
2
), pp.
269
275
.
7.
Kestner
,
B.
,
Lieuwen
,
T.
,
Hill
,
C.
,
Angello
,
L.
,
Barron
,
J.
, and
Perullo
,
C. A.
,
2015
, “
Correlation Analysis of Multiple Sensors for Industrial Gas Turbine Compressor Blade Health Monitoring
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112605
.
8.
Hee
,
L. M.
, and
Leong
,
M. S.
Improved Blade Fault Diagnosis Using Discrete Blade Passing Energy Packet and Rotor Dynamics Wavelet Analysis
,” GT2010-22218.
9.
Liu
,
J.
,
Liu
,
J.
,
Yu
,
D.
,
Kang
,
M.
,
Yan
,
W.
,
Wang
,
Z.
, and
Pecht
,
M. G.
,
2018
, “
Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network
,”
Energies
,
11
(
8
), p.
2149
.
10.
LeMieux
,
D. H.
,
2005
,
On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization
,
U.S. Department of Energy
,
DE-FC26-01NT41232
.
11.
Markham
,
J.
,
Cosgrove
,
J.
,
Scire
,
J.
,
Haldeman
,
C.
, and
Agoos
,
I.
,
2014
, “
Aircraft Engine-Mounted Camera System for Long Wavelength Infrared Imaging of In-service Thermal Barrier Coated Turbine Blades
,”
Rev. Sci. Instrum.
,
85
(
12
), pp.
124902-1
124902–7
.
12.
Jovanovic
,
M. B.
,
de Lange
,
H. C.
, and
van Steenhoven
,
A. A.
Influence of Laser Drilling Imperfection on Film Cooling Performances
,” Paper No. GT2005-68251.
13.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
14.
Bunker
,
R. S.
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,” Paper No. 2000-GT-0244.
15.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.
16.
Wang
,
F. Q.
,
Pu
,
J.
,
Wang
,
J. H.
, and
Xia
,
W. D.
,
2021
, “
Numerical Investigation of Effects of Blockage, Inclination Angle, and Hole-Size on Film Cooling Effectiveness at Concave Surface
,”
ASME J. Turbomach.
,
143
(
2
), p.
021007
.
17.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling
,”
ASME J. Turbomach.
,
129
(
3
), pp.
599
607
.
18.
Barringer
,
M. D.
,
Coward
,
A.
,
Clark
,
K. P.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,” Paper No. GT2014-25570.
19.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Haldeman
,
C. W.
,
Markham
,
J. R.
,
Cosgrove
,
J. E.
,
Carlson
,
A. E.
, and
Scire
,
J. J.
,
2021
, “
Acquisition and Processing Considerations for Infrared Images of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
143
(
4
), p.
041013
.
20.
Mori
,
M.
,
Novak
,
L.
, and
Sekavčnik
,
M.
,
2007
, “
Measurements on Rotating Blades Using IR Thermography
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
387
396
.
21.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Wagner
,
J. H.
,
Thole
,
K. A.
,
Arisi
,
A. N.
, and
Haldeman
,
C. W.
Effects of Part-to-Part Flow Variations on Overall Effectiveness and Life of Rotating Turbine Blades
,” Paper No. GT2022-83216.
22.
Hassan
,
J. M.
,
Mohamed
,
T. A.
,
Mohammed
,
W. S.
, and
Alawee
,
W. H.
,
2014
, “
Modeling the Uniformity of Manifold With Various Configurations
,”
J. Fluids
,
2014
, pp.
1
8
.
23.
DeShong
,
E. T.
,
Peters
,
B.
,
Paynabar
,
K.
,
Gebraeel
,
N.
,
Thole
,
K. A.
, and
Berdanier
,
R. A.
,
2022
, “
Applying Infrared Thermography as a Method for On-line Monitoring of Turbine Blade Coolant Flow
,”
ASME J. Turbomach.
,
144
(
11
), p.
111009
.
24.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B
,
58
(
1
), pp.
267
288
.
You do not currently have access to this content.