Abstract

By leveraging the additive manufacturing (AM) platform, development time and costs for turbine component testing can be reduced relative to traditional investment casting. Surface roughness is a key characteristic of the additive manufacturing process that can impact flow, heat transfer, and mechanical integrity of printed components. There are multiple design and build considerations that result in variability in surface roughness, especially when additively fabricating complicated three-dimensional vanes and internal cooling passages. This study characterizes the surface roughness of internal cooling passages, vanes, and flat external surface samples made using additive manufacturing, specifically the direct metal laser sintering process. The samples were manufactured with various wall thicknesses, layer thicknesses, build locations, build directions, and on different AM machines. A combination of computed tomography scanning and optical profilometry was used to evaluate surface roughness levels. The data indicate that the dominant factors in roughness for a given layer thickness are a function of wall thickness, build location, and build direction.

References

1.
Rehme
,
O.
,
2010
,
Cellular Design for Laser Freeform Fabrication
,
Cuvillier Verlag
,
Germany
.
2.
Sendino
,
S.
,
Martinez
,
S.
,
Lamikiz
,
A.
,
Lartategui
,
F.
,
Gardon
,
M.
, and
Gonzalez
,
J. J.
,
2021
, “
Analytical Study of the Melt Pool Distortion in the Laser Powder Bed Fusion Process Caused by the Angle of Incidence of the Laser and Its Effect on the Surface Finish of the Part
,”
IOP Conf. Series: Mater. Sci. Engi.
,
1193
, pp.
1
8
.
3.
Jamshidinia
,
M.
, and
Kovacevic
,
R.
,
2015
, “
The Influence of Heat Accumulation on the Surface Roughness in Powder-Bed Addititve Manufacturing
,”
Surf. Topogr. Metrol. Prop.
,
3
(
1
), p.
014003
.
4.
Yeung
,
H.
,
Lane
,
B.
, and
Fox
,
J.
,
2019
, “
Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing Geometry and Conduction-Based Laser Power Control for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
30
, p.
100844
.
5.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Tailoring Surface Roughness Using Additive Manufacturing to Improve Internal Cooling
,”
ASME J. Turbomach.
,
142
(
7
), p.
071004
.
6.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transf.
,
75
, pp.
58
74
.
7.
Tian
,
Y.
,
Tomus
,
D.
,
Rometsch
,
P.
, and
Wu
,
X.
,
2016
, “
Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting
,”
Addit. Manuf.
,
13
, pp.
103
112
.
8.
Pakkanen
,
J.
,
Calignano
,
F.
,
Trevisan
,
F.
,
Lorusso
,
M.
,
Ambrosio
,
E. P.
,
Manfredi
,
D.
, and
Fino
,
P.
,
2016
, “
Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
47
(
8
), pp.
3837
3844
.
9.
Kleszczynski
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
zur Jacobsmuhlen
,
J.
,
Merhof
,
D.
, and
Witt
,
G.
,
2015
, “
Position Dependency of Surface Roughness in Parts From Laser Beam
,”
SFF Symposium
,
Austin, TX
,
Aug. 10
, pp.
360
370
.
10.
Oter
,
Z. C.
,
Coskun
,
M.
,
Akca
,
Y.
,
Surmen
,
O.
,
Yilmaz
,
M. S.
,
Ozer
,
G.
,
Tarakci
,
G.
,
Khan
,
H. M.
, and
Koc
,
E.
,
2019
, “
Support Optimization for Overhanging Parts in Direct Metal Laser Sintering
,”
Optik (Stuttg)
,
181
, pp.
575
581
.
11.
Sendino
,
S.
,
Gardon
,
M.
,
Lartategui
,
F.
,
Martinez
,
S.
, and
Lamikiz
,
A.
,
2020
, “
The Effect of the Laser Incidence Angle in the Surface of L-Pbf Processed Parts
,”
Coatings
,
10
(
11
), pp.
1
12
.
12.
Subramanian
,
R.
,
Rule
,
D.
, and
Nazik
,
O.
,
2021
, “
Dependence of LPBF Surface Roughness on Laser Incidence Angle and Component Build Orientation
,”
Proceedings of the ASME Turbo Expo GT2021-597
,
Virtual, Online
,
June 7
.
13.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
14.
Bacchewar
,
P. B.
,
Singhal
,
S. K.
, and
Pandey
,
P. M.
,
2007
, “
Statistical Modelling and Optimization of Surface Roughness in the Selective Laser Sintering Process
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
,
221
(
1
), pp.
35
52
.
15.
Wegner
,
A.
, and
Witt
,
G.
,
2012
, “
Correlation of Process Parameters and Part Properties in Laser Sintering Using Response Surface Modeling
,”
Phys. Procedia
,
39
, pp.
480
490
.
16.
Wu
,
Z.
,
Narra
,
S. P.
, and
Rollett
,
A.
,
2020
, “
Exploring the Fabrication Limits of Thin-Wall Structures in a Laser Powder Bed Fusion Process
,”
Int. J. Adv. Manuf. Technol.
,
110
(
1–2
), pp.
191
207
.
17.
Kaplanskii
,
Y. Y.
,
Levashov
,
E. A.
,
Korotitskiy
,
A. V.
,
Loginov
,
P. A.
,
Sentyurina
,
Z. A.
, and
Mazalov
,
A. B.
,
2020
, “
Influence of Aging and HIP Treatment on the Structure and Properties of NiAl-Based Turbine Blades Manufactured by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
31
.
18.
Krewinkel
,
R.
,
Such
,
A.
,
de la Torre
,
A. O.
,
Wiedermann
,
A.
,
Castillo
,
D.
,
Rodriguez
,
S. A.
,
Schleifenbaum
,
J. H.
, and
Blaswich
,
M.
,
2020
, “
Design and Characterization of Additively Manufactured NGVs Operated in a Small Industrial Gas Turbine
,”
Int. J. Gas Turbine, Propuls. Power Syst.
,
11
(
4
), pp.
36
44
.
19.
Rott
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
Casper
,
J.
,
Full
,
M.
, and
Schleifenbaum
,
J. H.
,
2020
, “
Surface Roughness in Laser Powder Bed Fusion—Interdependency of Surface Orientation and Laser Incidence
,”
Addit. Manuf.
,
36
, p.
101437
.
20.
EOS
,
2011
,
Basic Training EOSINT M280
,
Electro Optical Systems GmbH
,
Munich, Germany
.
21.
Thole
,
K. A.
,
Barringer
,
M. D.
,
Berdanier
,
R. A.
,
Fishbone
,
S.
,
Wagner
,
J. H.
,
Dennis
,
R.
,
Black
,
J.
,
Burke
,
P.
,
Straub
,
D.
,
O'Neill
,
F.
,
Stimpson
,
C. K.
,
Riahi
,
A.
,
Aggarwala
,
A.
,
Bradshaw
,
S.
,
Kohli
,
A.
,
Mongillo
,
D.
,
Praisner
,
T.
,
Rodriguez
,
J.
,
Fox
,
M.
, and
Kim
,
Y. W.
,
2021
, “
Defining a Testbed for the U.S. Turbine Industry: The National Experimental Turbine (NExT)
,”
American Institute of Aeronautics and Astronautics (AIAA).
,
Virtual
,
Aug. 9
.
22.
Reinhart
,
C.
,
2011
,
Inudstrial CT & Precision
,
Volume Graphics GmbH
,
Heidelberg, Germany
.
23.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Understanding Laser Powder Bed Fusion Surface Roughness
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071003
.
24.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Sanders
,
P.
, and
Wang
,
L.
,
2021
, “
Impact of Additive Manufacturing on Internal Cooling Channels With Varying Diameters and Build Directions
,”
ASME J. Turbomach.
,
143
(
7
), p.
071003
.
25.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
You do not currently have access to this content.