Abstract

Boundary-layer ingestion systems have the potential to improve propulsion efficiency using fluid with lower momentum near the airframe. However, they also bring variations in the velocity and total pressure, leading to a complex distortion of the flow at the inlet stage in the form of a circumferential step variation with significant strength. Previous simulation of NASA Rotor 67 under a 120-deg sector distortion revealed the occurrence of first-order bending mode excited by the second engine order (2EO) under circumferentially distorted inflow. To explore if the variation of distortion extent could affect the excited mode, five cases are simulated for different sector angles of distortion extent: 60, 90, 120, 150, and 180 deg. The result of modal-force analysis demonstrates that the modal force increases from the 60-deg case to the 90-deg case and then decreases from the 90-deg case to the 180-deg case, and the lowest value is reached in the 180-deg case. To further investigate the excitation sources leading to such variations of modal force, the harmonic force caused by periodic flow is analyzed based on the Fourier decomposition. The results indicate two main sources for the excitation of 2EO: (1) the harmonic force induced by the distorted inflow, and (2) the dynamic response of the fan blade caused by a sudden drop of inlet total pressure and controlled by the time constant.

References

1.
Smith
,
L. H.
,
1993
, “
Wake Ingestion Propulsion Benefit
,”
J. Propul. Power
,
9
(
1
), pp.
74
82
.
2.
Plas
,
A. P.
,
Sargeant
,
M. A.
,
Crichton
,
D.
,
Greitzer
,
E. M.
,
Hynes
,
T. P.
, and
Hall
,
C. A.
,
2007
, “
Performance of a Boundary Layer Ingesting (BLI) Propulsion System
,” AIAA Paper No. 2007-450.
3.
Defoe
,
J. J.
, and
Spakovszky
,
Z. S.
,
2013
, “
Effects of Boundary-Layer Ingestion on the Aero-Acoustics of Transonic Fan Rotors
,”
ASME J. Turbomach.
,
135
(
5
), p.
051013
.
4.
Perovic
,
D.
,
Hall
,
C. A.
, and
Gunn
,
E. J.
,
2019
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
ASME J. Turbomach.
,
141
(
9
), p.
091007
.
5.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow: Concepts and Applications
, Vol.
12
,
Cambridge University Press
,
Cambridge, UK
, pp.
615
700
.
6.
Mistry
,
C. S.
, and
Pradeep
,
A. M.
,
2013
, “
Investigations on the Effect of Inflow Distortion on the Performance of a High Aspect Ratio-Low Speed Contra Rotating Fan Stage
,” ASME Paper No. GT2013-94311.
7.
Fidalgo
,
V. J.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.
8.
Manwaring
,
S. R.
, and
Fleeter
,
S.
,
1990
, “
Inlet Distortion Generated Periodic Aerodynamic Rotor Response
,”
ASME J. Turbomach.
,
112
(
2
), pp.
298
307
.
9.
Bakhle
,
M. A.
,
Reddy
,
T. S. R.
, and
Coroneos
,
R. M.
,
2014
, “
Forced Response Analysis of a Fan With Boundary Layer Inlet Distortion
,” AIAA Paper No. 2014-3734.
10.
Bakhle
,
M. A.
,
Reddy
,
T. S. R.
,
Herrick
,
G. P.
,
Shabbir
,
A.
, and
Florea
,
R. V.
,
2012
, “
Aeromechanics Analysis of a Boundary Layer Ingestion Fan
,” AIAA Paper 2012-3995.
11.
Zhang
,
W. Q.
, and
Vahdati
,
M.
,
2017
, “
Influence of the Inlet Distortion on Fan Stall Margin at Different Rotation Speeds
,” GPPS Paper No. GPPS-2017-2027.
12.
Zhang
,
W. Q.
, and
Vahdati
,
M.
,
2018
, “
A Parametric Study of the Effect of Inlet Distortion on Fan Aerodynamic Stability
,” ASME Paper No. GT2018-76673.
13.
Kenyon
,
J. A.
,
Rabe
,
D. C.
, and
Fleeter
,
S.
,
1999
, “
Aerodynamic Effects on Blade Vibration Stress Variations
,”
J. Propul. Power
,
15
(
5
), pp.
248
262
.
14.
Usab
,
W. J.
, and
Verdon
,
J. M.
,
1991
, “
Advances in the Numerical Analysis of Linearized Unsteady Cascade Flows
,”
ASME J. Turbomach.
,
113
(
4
), pp.
633
643
.
15.
Verdon
,
J. M.
,
1989
, “
The Unsteady Aerodynamic Response to Arbitrary Modes of Blade Motion
,”
J. Fluids Struct.
,
3
(
3
), pp.
255
274
.
16.
Ott
,
P.
,
Bolcs
,
A.
, and
Fransson
,
T. H.
,
1995
, “
Experimental and Numerical Study of the Time-Dependent Pressure Response of a Shock Wave Oscillating in a Nozzle
,”
ASME J. Turbomach.
,
117
(
1
), pp.
107
114
.
17.
Marshall
,
J. G.
,
Denton
,
J.
,
Xu
,
L.
, and
Chew
,
J. W.
,
2000
, “
Prediction of Low Engine Order Inlet Distortion Driven Response in a Low Aspect Ratio Fan
,” ASME Paper No. GT2000-0347.
18.
Stuart
,
M.
,
2006
, “
Forced Response Prediction for Industrial Gas Turbine Blades
,” Ph.D. thesis,
University of Durham
,
Durham, UK
, pp.
108
122
.
19.
Mårtensson
,
H.
,
2021
, “
Harmonic Forcing From Distortion in a Boundary Layer Ingesting Fan
,”
Aerospace
,
8
(
3
), p.
58
.
20.
Li
,
H. D.
, and
He
,
L.
,
2002
, “
Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
285
292
.
21.
Pan
,
T. Y.
,
Yan
,
Z. Q.
,
Lu
,
H. N.
, and
Li
,
Q. S.
,
2021
, “
Numerical Investigation on the Forced Vibration Induced by the Low Engine Order Under Boundary Layer Ingestion Condition
,”
Aerosp. Sci. Technol.
,
115
, p.
106802
.
22.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,” NASA Technical Paper 2879.
23.
Gelder
,
T. F.
,
Schmidt
,
J. F.
, and
Suder
,
K. L.
,
1987
, “
Design and Performance of Controlled Diffusion Stator Compared With Original Double-Circular-Arc Stator
,”
Aerospace
,
96
(
6
), pp.
1000
1012
.
24.
Suder
,
K. L.
, and
Celestina
,
M. L.
,
1996
, “
Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
118
(
2
), pp.
218
229
.
25.
Sonoda
,
T.
,
Arima
,
T.
, and
Oana
,
M.
,
1999
, “
The Effect of Inlet Boundary Layer Thickness on the Flow Within an Annular S-Shaped Duct
,”
ASME J. Turbomach.
,
121
(
3
), pp.
626
634
.
26.
Vakili
,
A. D.
,
Wu
,
J. M.
,
Liver
,
P.
, and
Bhat
,
M. K.
,
1985
, “
Flow Control in a Diffusing S-Duct
,”
AIAA Shear Flow Control Conference
,
Boulder, CO
,
Mar. 1
, Paper No. AIAA-85-0524.
27.
Cousins
,
W. T.
,
1998
, “
A Theory for the Prediction of Compressor Blade Aerodynamic Response
,”
34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Cleveland,OH
,
July 13–15
, Paper No. AIAA-98-3308. .
28.
Cousins
,
W. T.
,
1997
,
The Dynamic of Stall and Surge Behavior in Axial-Centrifugal Compressors
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
, pp.
10
28
.
29.
Lakhwani
,
C.
, and
Marsh
,
H.
,
1974
, “
Rotating Stall in an Isolated Rotor Row and a Single-Stage Compressor
,”
Conference: Heat and Fluid Flow in Steam and Gas Turbine Plant
,
Institution of Mechanical Engineers in London
,
Apr. 3–5
, pp.
149
157
.
30.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors-Part I: Theoretical Compression System Model
,”
J. Eng. Power
,
98
(
2
), pp.
190
198
.
31.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2016
, “
The Impact of Blade Loading and Unsteady Pressure Bifurcations on Low-Pressure Turbine Flutter Boundaries
,”
ASME J. Turbomach.
,
138
(
4
), p.
041002
.
You do not currently have access to this content.