Abstract

Casing treatment is an advanced design feature intended to improve the stability of a compressor. Various investigations have been conducted based on both experimental and numerical studies at least over the last 50 years. In general, it has been demonstrated that a careful design of a casing treatment can substantially improve the stall margin of a tip-limited compressor although this generally comes with an aerodynamic efficiency penalty. This review paper revisits important past studies on casing treatments to clarify findings on the sometimes-conflicting results and understand what lessons are generally applicable to a wider group of machines. Circumferential grooves over a rotor tip have been in use for some time. Much recent work has focused on axial slots over a rotor tip, because of the significant stall margin improvement and the better efficiency potential of this configuration. This paper includes both configurations, with more emphasis on the latter. The paper concludes that casing treatment offers powerful benefits to a compressor and deserves continuing research and development. Good benefits result from axial slots which start ahead of the rotor leading edge and cover the front part of the rotor tip and include skew (tangential lean in the direction of rotation). Contributing physical mechanisms include increasing the axial momentum of the casing flow casing and reducing the aerodynamic blockage to improve the casing boundary layer and the tip leakage flow. The role of impacting unsteadiness is yet to be further clarified. Areas of further research are recommended, both experimental and analytical, including further work to understand and control the loss mechanisms, studying and controlling stage interaction effects in multistage compressors, and the simultaneous design optimization of the rotor blade with the casing treatment. Multi-disciplinary issues such as manufacturing cost, weight, length, durability, aeromechanics effects, and tolerance to dust and ice also deserve further attention.

References

1.
Day
,
I. J.
,
2016
, “
Stall, Surge and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
2.
Smith Jr.
,
L. H.
,
1970
, “Casing Boundary Layers in Multistage Axial-Flow Compressors,”
Flow Research on Blading
,
Elsevier Publishing Company
,
Amsterdam, The Netherlands
, pp.
275
304
.
3.
Wadia
,
A. R.
,
Szucs
,
P. N.
, and
Crall
,
D. W.
,
1998
, “
Inner Workings of Aerodynamic Sweep
,”
ASME J. Turbomach.
,
120
(
4
), pp.
671
682
.
4.
Gallimore
,
S.
,
Bolger
,
J.
,
Cumpsty
,
N.
,
Taylor
,
M.
,
Wright
,
P.
, and
Place
,
J.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part 1: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.
5.
Gallimore
,
S.
,
Bolger
,
J.
,
Cumpsty
,
N.
,
Taylor
,
M.
,
Wright
,
P.
, and
Place
,
J.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part 2: Low and High-Speed Designs and Test Verification
,”
ASME J. Turbomach.
,
124
(
4
), pp.
533
541
.
6.
Auchoybur
,
K.
, and
Miller
,
R.
,
2017
, “
Design of Compressor Endwall Velocity Triangle
,”
ASME J. Turbomach.
,
139
(
6
), p.
061005
, (also ASME GT2016-57396).
7.
Culley
,
D.
,
Bright
,
M.
,
Prahst
,
P.
, and
Strazisar
,
A.
,
2004
, “
Active Flow Separation Control of a Stator Vane Using Embedded Injection in a Multistage Compressor Environment
,”
ASME J. Turbomach
,
126
(
1
), pp.
24
34
, (also ASME GT2003-38863).
8.
Kirtley
,
K.
,
Graziosi
,
P.
,
Wood
,
P.
,
Beacher
,
B.
, and
Shin
,
H.-W.
,
2005
, “
Design and Test of an Ultra-low Solidity Flow-Controlled Compressor Stator
,”
ASME J. Turbomach.
,
127
(
4
), pp.
689
698
, (also ASME GT2004-53012).
9.
Engel
,
K.
,
Zscherp
,
C.
,
Wolfrum
,
N.
,
Nürnberger
,
D.
, and
Kügeler
,
E.
,
2009
, “
CFD Simulations of the TP400 IPC With Enhanced Casing Treatment in Off-Design Operating Conditions
,” ASME GT 2009-60324.
10.
Hathaway
,
M.
,
2007
, “
Passive Endwall Treatments for Enhancing Stability
,” NASA TM-2007-214409.
11.
Wilde
,
G.
,
1951
, “
Improvements in or Relating to Gas Turbines
,” Patent No. GB 701576.
12.
Griffin
,
R. G.
, and
Smith
,
L. H.
,
1966
,
Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part I—Design of Rotor Blowing and Bleeding Configurations
,” NASA CR–54587.
13.
Koch
,
C. C.
, and
Smith
,
L. H.
,
1968
, “
Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part II—Performance of Plain Casing Insert Configuration with Undistorted Inlet Flow and Boundary Layer Trip
,” NASA CR–54588.
14.
Koch
,
C. C.
, and
Smith
,
L. H.
,
1968
, “
Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part III—Performance of Blowing Insert Configuration No. 1
,” NASA CR–54589.
15.
Koch
,
C. C.
, and
Smith
,
L. H.
,
1968
, “
Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part IV—Performance of Plain Bleed Insert Configuration No. 3
,” NASA CR–54590.
16.
Koch
,
C. C.
, and
Smith
,
L. H.
,
1969
, “
Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part V—Performance of Plain Casing Insert Configuration With Distorted Inlet Flow
,” NASA CR–54591.
17.
Koch
,
C. C.
,
1970
, “
Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part VI—Final Report
,” NASA CR–54592.
18.
Bailey
,
E. E.
, and
Voit
,
C. H.
,
1970
, “
Some Observations of Effects of Porous Casing on Operating Range of a Single Axial Flow Compressor Rotor
,” NASA TM X-2120.
19.
Osborn
,
W. M.
,
Lewis
,
G. E.
, and
Heidelberg
,
W.
,
1971
, “
Effect of Several Porous Casing treatments on Stall Limit and an Overall Performance of an Axial Flow Compressor Rotor
,” NASA TN D-6537.
20.
Moore
,
R. D.
,
Kovich
,
G.
, and
Blade
,
R. J.
,
1971
, “
Effect of Casing Treatment on Overall and Blade Element Performance of a Compressor Rotor
,” NASA TN D-6538.
21.
Bailey
,
E. E.
,
1972
, “
Effect of Grooved Casing Treatment on the Flow Range Capability of a Single-Stage Axial-Flow Compressor
,” NASA TM X-2459.
22.
Boyce
,
M. P.
,
Schiller
,
R. N.
, and
Desai
,
A. R.
,
1975
, “
Study of Casing Treatment Effects in Axial Flow Compressors
,”
ASME J. Eng. Power
,
97
(
4
), pp.
477
483
.
23.
Burger
,
G. D.
,
Hodges
,
T. R.
, and
Keenan
,
M. J.
,
1975
, “
Two-Stage Fan III. Data and Performance With Rotor Tip Casing Treatment Uniform and Distorted Inlet Flows
,” NASA CR-132722.
24.
Prince
,
D. C.
,
Wisler
,
D. C.
, and
Hilvers
,
D. C.
,
1975
, “
A Study of Casing Treatment Stall Margin Improvement Phenomena
,” ASME Paper No. 75-GT-60. (also NASA CR-134552, 1974).
25.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
ASME J. Eng. Power
,
99
(
1
), pp.
121
133
.
26.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, “
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbine Power
,
106
(
3
), pp.
532
541
.
27.
Fujita
,
H.
, and
Takata
,
H.
,
1984
, “
A Study of Configurations of Casing Treatment for Axial Flow Compressors
,”
Bull. JSME
,
27
(
230
), pp.
1675
1681
.
28.
Chen
,
H.
,
Koley
,
S. S.
,
Li
,
Y.
, and
Katz
,
J.
,
2019
, “
Systematic Experimental Evaluations Aimed at Optimizing the Geometry of Axial Casing Groove in a Compressor
,” ASME Paper No. GT2019-91050.
29.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
,
England
.
30.
Waterman
,
M.
,
1985
, “
Axial Flow Compressor Surge Margin Improvement
,” Patent No. GB 2245312(A).
31.
Waterman
,
M.
,
1992
, “
Axial Flow Compressor Surge Margin Improvement
,” Patent No. US 005137419A.
32.
Seitz
,
P.
,
1999
,
“Casing Treatment for Axial Flow Compressor,” PhD thesis, University of Cambridge, Cambridge, UK
.
33.
Emmons
,
H.
,
Pearson
,
C.
, and
Grant
,
H.
,
1955
, “
Compressor Surge and Stall Propagation
,”
J. Fluid. Eng.
,
77
(
4
), pp.
455
467
.
34.
Hoying
,
D.
,
Tan
,
C.
,
Vo
,
H.
, and
Greitzer
,
E.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
. (also ASME 98-GT-588).
35.
Vo
,
H.
,
Tan
,
C.
, and
Greitzer
,
E.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
36.
Greitzer
,
E. M.
,
Nikkanen
,
J. P.
,
Haddad
,
D. E.
,
Mazzawy
,
R. S.
, and
Joslyn
,
H. D.
,
1979
, “
A Fundamental Criterion for the Application of Rotor Casing Treatment
,”
ASME J. Fluids Eng.
,
101
(
2
), pp.
237
243
.
37.
Shabbir
,
A.
, and
Adamczyk
,
J. J.
,
2005
, “
Flow Mechanism for Stall Margin Improvement Due to Circumferential Casing Grooves on Axial Compressors
,”
ASME J. Turbomach.
,
127
(
4
), pp.
708
717
, (also ASME GT2004-53903).
38.
Ross
,
M. H.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
Chen
,
H.
, and
Shi
,
K.
,
2018
, “
Axial Compressor Stall, Circumferential Groove Casing Treatment, and the Tip-Clearance Momentum Flux
,”
J. Propuls. Power
,
34
(
1
), pp.
146
152
.
39.
Lee
,
N. K. W.
, and
Greitzer
,
E. M.
,
1990
, “
Effects of Endwall Suction and Blowing on Compressor Stability Enhancement
,”
ASME J. Turbomach.
,
112
(
1
), pp.
133
144
.
40.
Bae
,
J.
,
Breuer
,
K.
, and
Tan
,
C. S.
,
2004
, “
Periodic Unsteadiness of Compressor Tip Clearance Vortex
,” ASME Paper No. GT 2004-53015.
41.
Dhingra
,
M.
,
Neumeier
,
Y.
,
Prasad
,
J. V. R.
,
Breeze-Stringfellow
,
A.
,
Shin
,
H.
, and
Szucs
,
P.
,
2006
, “
A Stochastic Model for a Compressor Stability Measure
,”
ASME J. Turbomach.
,
129
(
3
), pp.
730
737
.
42.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2013
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach.
,
135
(
1
), p.
011033
.
43.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S.
,
Doeller
,
N.
, and
Katz
,
J.
,
2017
, “
An Experimental Study of Stall Suppression and Associated Changes to the Flow Structures in the Tip Region of an Axial Low Speed Fan Rotor by Axial Casing Grooves
,”
ASME J. Turbomach.
,
139
(
12
), p.
121010
.
44.
Houghton
,
T.
, and
Day
,
I.
,
2012
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME J. Turbomach.
,
134
(
2
), p.
021003
.
45.
Beheshti
,
B. H.
,
Teixeira
,
J. A.
,
Ivey
,
P. C.
,
Ghorbanian
,
K.
, and
Farhanieh
,
B.
,
2004
, “
Parametric Study of Tip Clearance—Casing Treatment on Performance and Stability of a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
126
(
4
), pp.
527
535
.
46.
Alone
,
D. B.
,
Kumar
,
S. S.
,
Thimmaiah
,
S.
,
Mudipalli
,
J. R. R.
,
Pradeep
,
A. M.
,
Ramamurthy
,
S.
, and
Iyengar
,
V. S.
,
2014
, “
Performance Characterization of the Effect of Axial Positioning of Bend Skewed Casing Treatment Retrofitted to a Transonic Axial Flow Compressor
,” ASME Paper No. GT 2014-26102.
47.
Goinis
,
G.
, and
Nicke
,
E.
,
2016
, “
Optimizing Surge Margin and Efficiency of a Transonic Compressor
,” ASME Paper No. GT2016-57896.
48.
Goinis
,
G.
,
Voß
,
C.
, and
Nicke
,
E.
,
2019
, “
The Potential of Casing Treatments for Transonic Compressors: Evaluation Based on Axial-Slot and Rotor Blade Optimization
,” Paper No. ISABE-2019-24368.
49.
Rolfes
,
M.
,
Lange
,
M.
, and
Vogeler
,
K.
,
2015
, “
Experimental Investigation of Circumferential Groove Casing Treatments for Large Tip Clearances in a Low Speed Axial Research Compressor
,” ASME Paper No. GT2015-42646.
50.
Streit
,
J. A.
,
Heinichen
,
F.
, and
Kau
,
H. P.
,
2013
, “
Axial-slot Casing Treatments Improve the Efficiency of Axial Flow Compressors: Aerodynamic Effect of a Rotor Redesign
,” ASME Paper No. GT2013-94975.
51.
Streit
,
J. A.
,
Kau
,
H. A.
,
Brandstetter
,
C.
, and
Heinichen
,
F.
,
2013
, “
An Advanced Axial-Slot Casing Treatment on a Tip-Critical Transonic Compressor Rotor Part 2: Taking a Closer Look with CFD
,”
Proceedings of the 10th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics.
52.
Wolfrum
,
N.
,
Brignole
,
G.
, and
Engel
,
K.
,
2013
, “
A Numerical Model for Casing Treatment Applications in Axial Flow Compressors
,” ASME paper GT2013-94408.
53.
Favaretto
,
C. F. F.
,
Anderson
,
M. R.
,
Li
,
S.
, and
Hu
,
L.
,
2018
, “
Development of a Meanline Model for Preliminary Design of Recirculating Casing Treatment in Turbocharger Compressors
,” ASME Paper No. GT2018-75717.
54.
Müller
,
M. W.
,
Schiffer
,
H. P.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor with Casing Treatments
,” ASME Paper No. GT2011-45364.
55.
Brandstetter
,
C.
,
Streit
,
J.
,
Wartzek
,
F.
,
Heinichen
,
F.
, and
Schiffer
,
H. P.
,
2013
, “
An Advanced Axial-Slot Casing Treatment on a Tip-Critical Transonic Compressor Rotor Part 1: Unsteady Hot Wire and Wall Pressure Measurements
,”
Proceedings of the 10th European Conf. on Turbomachinery Fluid Dynamics & Thermodynamics.
,
Lappeenranta, Finland
,
Apr. 15–19
.
56.
Brandstetter
,
C.
,
Wartzek
,
F.
,
Werner
,
J.
,
Schiffer
,
H. P.
, and
Heinichen
,
F.
,
2015
, “
Unsteady Measurements of Periodic Effects in a Transonic Compressor With Casing Treatments
,” ASME Paper No. GT2015-42394.
57.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
, and
Katz
,
J.
,
2021
, “
Effects of Axial Casing Grooves on the Structure of Turbulence in the Tip Region of an Axial Turbomachine Rotor
,”
ASME J. Turbomach.
,
143
(
9
), p.
091009
.
58.
Koley
,
S. S.
,
Saraswat
,
A.
,
Chen
,
H.
, and
Katz
,
J.
,
2021
, “
Effect of the Axial Casing Groove Geometry on the Production and Distribution of Reynolds Stresses in the Tip Region of an Axial Compressor Rotor
,” ASME Paper No. GT2021-60314.
59.
Brandstetter
,
C.
,
Holzinger
,
F.
,
Schiffer
,
H. P.
,
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2016
, “
Near Stall Behavior of a Transonic Compressor Rotor With Casing Treatment
,” ASME Paper No. GT 2016-56606.
60.
Möller
,
D.
,
Jüngst
,
M.
,
Schiffer
,
H. P.
,
Giersch
,
T.
, and
Heinichen
,
F.
,
2017
, “
Influence of Rotor Tip Blockage on Near Stall Blade Vibrations in an Axial Compressor Rig
,”
ASME J. Turbomach.
,
140
(
2
), p.
021007
.
61.
Kumar
,
S. S.
,
Alone
,
D. B.
,
Thimmaiah
,
S.
,
Mudipalli
,
J. R. R.
,
Kumar
,
L.
,
Jana
,
S.
,
Kandagal
,
S. B.
, and
Ganguli
,
R.
,
2022
, “
Aeroelastic Aspects of Axial Compressor Stage With Self-recirculating Casing Treatment
,”
ASME J. Turbomach.
,
144
(
6
), p.
061008
.
62.
Khalid
,
S.
,
1997
, “
A Practical Compressor Casing Treatment
,” ASME Paper No. 97-GT-375.
You do not currently have access to this content.