Abstract

Physics-based particle rebound models are essential for the accurate tracking of particles in aero engines. Current models are often informed by analysis of spherical particle impact, but particles ingested in engines typically feature edges and corners. Understanding the effects of particle shape on rebound behavior is critical for ascertaining the range of validity of existing models and for developing improved models. Here, we report on first-principle simulations of cubical particles impacting Ti-6Al-4V targets. Our simulations reveal that, in the case of normal impact at a given incident speed, the coefficient of restitution (CoR) of cubes exhibits significant scattering. The scattering and median of computed CoR show good agreement with recent experiments using sand particles of the same volume-based size, sphericity, and incident speed. Comparison with spheres impacting the same target shows that the median CoR of cubes is significantly lower than that of spheres. Further, the rebound of cubes features significant rotation and transverse velocity, which can account for ∼60% of a rebounding cube’s energy but are negligible modes of energy transfer in impacts involving spheres. We identify that the moment arm length, a parameter that characterizes the mass distribution of angular particles impacting a target, plays a key role in particle rebound, and its distribution is strongly correlated with rebound stochasticity. These findings can benefit the development of physics-based low-order models of angular particle rebound.

References

1.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.
2.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2018
, “
EBFOG: Deposition, Erosion, and Detachment on High-Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
140
(
6
), p.
061001
.
3.
Tabakoff
,
W.
,
Kotwal
,
R.
, and
Hamed
,
A.
,
1979
, “
Erosion Study of Different Materials Affected by Coal Ash Particles
,”
Wear
,
52
(
1
), pp.
161
173
.
4.
Tabakoff
,
W.
,
Malak
,
M. R.
, and
Hamed
,
A.
,
1987
, “
Laser Measurements of Solid-Particle Rebound Parameters Impacting on 2024 Aluminum and 6A1-4 V Titanium Alloys
,”
AIAA J.
,
25
(
5
), pp.
721
726
.
5.
Tsuji
,
Y.
,
Oshima
,
T.
, and
Morikawa
,
Y.
,
1985
, “
Numerical Simulation of Pneumatic Conveying in a Horizontal Pipe
,”
KONA Powder Part. J.
,
3
(
0
), pp.
38
51
.
6.
Sommerfeld
,
M.
,
1992
, “
Modelling of Particle-Wall Collisions in Confined Gas-Particle Flows
,”
Int. J. Multiphase Flow
,
18
(
6
), pp.
905
926
.
7.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
383
386
.
8.
Jackson
,
R. L.
,
Green
,
I.
, and
Marghitu
,
D. B.
,
2010
, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
Nonlinear Dyn.
,
60
(
3
), pp.
217
229
.
9.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
10.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Collisions in Gas Turbine Components
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Volume 6B: Turbomachinery
,
San Antonio, TX
,
June 3–7
, ASME Paper No. GT2013-95623.
11.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
12.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
13.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp.
89
119
.
14.
Whitaker
,
S. M.
, and
Bons
,
J. P.
,
2018
, “
An Improved Particle Impact Model by Accounting for Rate of Strain and Stochastic Rebound
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2D: Turbomachinery
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-77158.
15.
Yu
,
K. H.
, and
Tafti
,
D.
,
2019
, “
Size- and Temperature-Dependent Collision and Deposition Model for Micron-Sized Sand Particles
,”
ASME J. Turbomach.
,
141
(
3
), p.
031001
.
16.
Yu
,
K.
, and
Tafti
,
D.
,
2016
, “
Impact Model for Micrometer-Sized Sand Particles
,”
Powder Technol.
,
294
, pp.
11
21
.
17.
Kim
,
O. V.
, and
Dunn
,
P. F.
,
2007
, “
A Microsphere-Surface Impact Model for Implementation in Computational Fluid Dynamics
,”
J. Aerosol Sci.
,
38
(
5
), pp.
532
549
.
18.
Wall
,
S.
,
John
,
W.
,
Wang
,
H. C.
, and
Goren
,
S.
,
1990
, “
Measurements of Kinetic Energy Loss for Particles Impacting Surfaces
,”
Aerosol Sci. Technol.
,
12
(
4
), pp.
926
946
.
19.
Uzi
,
A.
, and
Levy
,
A.
,
2021
, “
Energy Absorption in Particle Breakage Under Impact Load
,”
Powder Technol.
,
377
, pp.
308
323
.
20.
Uzi
,
A.
, and
Levy
,
A.
,
2019
, “
On the Relationship Between Erosion, Energy Dissipation and Particle Size
,”
Wear
,
428
, pp.
404
416
.
21.
Uzi
,
A.
, and
Levy
,
A.
,
2018
, “
Energy Absorption by the Particle and the Surface During Impact
,”
Wear
,
404
, pp.
92
110
.
22.
Wu
,
C.-Y.
,
Li
,
L.-Y.
, and
Thornton
,
C.
,
2003
, “
Rebound Behaviour of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
929
946
.
23.
Sommerfeld
,
H.
,
Koch
,
C.
,
Schwarz
,
A.
, and
Beck
,
A.
,
2021
, “
High Velocity Measurements of Particle Rebound Characteristics Under Erosive Conditions of High Pressure Compressors
,”
Wear
,
470–471
, p.
203626
.
24.
Whitaker
,
S. M.
,
Reilly
,
D.
, and
Bons
,
J. P.
,
2013
, “
A Survey of Airborne Particle Impact Characteristics Using High Speed Particle Shadow Velocimetry
,”
American Institute of Aeronautics and Astronautics 43rd Fluid Dynamics Conference
,
San Diego, CA
,
June 24–27
, AIAA Paper No. 2013-2484.
25.
Lesuer
,
D.
,
199
, “
Experimental Investigations of Material Models for Ti-6Al-4V and 2024-T3
,” Lawrence Livermore National Laboratory Report No. DOT/FAA/AR-00/25.
26.
“LS DYNA Keyword User’s Manual,“ revision R11, LS-DYNA Support, October 2018, https://www.dynasupport.com/manuals/ls-dyna-manuals.
27.
Gorham
,
D. A.
, and
Kharaz
,
A. H.
,
2000
, “
The Measurement of Particle Rebound Characteristics
,”
Powder Technol.
,
112
(
3
), pp.
193
202
.
28.
Takaffoli
,
M.
, and
Papini
,
M.
,
2012
, “
Material Deformation and Removal Due to Single Particle Impacts on Ductile Materials Using Smoothed Particle Hydrodynamics
,”
Wear
,
274–275
, pp.
50
59
.
29.
Sommerfeld
,
M.
, and
Huber
,
N.
,
1999
, “
Experimental Analysis and Modelling of Particle-Wall Collisions
,”
Int. J. Multiphase Flow
,
25
(
6
), pp.
1457
1489
.
30.
Gaskell
,
J. G.
,
Vadgama
,
N.
,
McGilvray
,
M.
,
Gillespie
,
D. R.
, and
Clarkson
,
R.
,
2020
, “
Collision-Induced Rotation and the Magnus Force on Particulates
,”
American Institute of Aeronautics and Astronautics 2020 Forum
,
Virtual Event
,
June 15–19
, AIAA Paper No. 2020-2820.
You do not currently have access to this content.