Abstract

The fan systems of typical high bypass civil engines encounter strong flow distortions originating in the intake and the bypass duct. These flow distortions cause the fan stage operation point to vary from its design intent, thus reducing the fan stage performance and increasing low engine-order fan blade forcing. A cyclic pattern design for the fan Outlet Guide Vanes (OGV) can be effectively used to recover the fan stage performance and to control its system-level aeromechanical behavior. This paper presents the development of an OGV pattern design philosophy using the numerical experimentation technique. Multiple fan-intake unsteady computational fluid dynamic computations are conducted by clocking the circumferential pressure profile at the fan exit. The study revealed that a mild, low-harmonic fan back pressure profile with a suitable clocking position is able to improve the fan rotor efficiency and reduce the first engine order (1EO) fan forcing simultaneously. Such a profile can be generated by designing a cyclic OGV pattern that allows the bifurcation potential fields of controlled intensity and phase to pass through the OGV blade row, thus termed the translucent design philosophy. Further, a sensitivity study is performed to assess the effects of simultaneous distortions upstream and downstream of the fan. The study showed that a correctly clocked intra-stage static pressure profile can consistently improve both the performance and aeromechanical behavior of fan systems having different intake lengths and at different flight conditions. The implementation of the proposed translucent design philosophy in a new OGV pattern design tool is discussed.

References

1.
Cui
,
J.
,
Watson
,
R.
,
Tucker
,
P.
, and
Wilson
,
M.
,
2018
, “
Low Order Modelling for Fan and Outlet Guide Vanes in Aero-Engines
,”
ASME Turbo Expo
, Paper No. GT2018-75660.
2.
Rao Vadlamani
,
N.
,
Cao
,
T.
,
Watson
,
R.
, and
Tucker
,
P. G.
,
2019
, “
Toward Future Installations: Mutual Interactions of Short Intakes With Modern High Bypass Fans
,”
ASME J. Turbomach.
,
141
(
8
), p.
081013
.
3.
Carnevale
,
M.
,
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Low Frequency Distortion in Civil Aero-Engine Intake
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041203
.
4.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2014
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
5.
Kodama
,
H.
, and
Nogano
,
S.
,
1989
, “
Potential Pressure Field by Stators/Downstream Strut Interaction
,”
ASME J. Turbomach.
,
111
(
2
), pp.
19
7–
203
.
6.
Cerri
,
G.
, and
O’Brien
,
W. F.
,
1989
, “
Sensitivity Analysis and Optimum Design Method for Reduced Rotor-Stator-Strut Flow Interaction
,”
ASME J. Turbomach.
,
111
(
4
), pp.
401
408
.
7.
Shrinivas
,
G. N.
, and
Giles
,
M. B.
,
1995
, “
OGV Tailoring to Alleviate Pylon-OGV-Fan Interaction
,”
ASME Turbo Expo
, Paper No. 95-GT-198.
8.
Parry
,
A. B.
,
1996
, “
Optimisation of Bypass Fan Outlet Guide Vanes
,”
ASME Turbo Expo
, Paper No. 96-GT-433.
9.
Parry
,
A. B.
, and
Bailey
,
R. H.
,
1997
, “
The Use of Cyclic Variations in Strut Stagger to Reduce Coupled Blade-Vane-Strut-Pylon Interaction and System Losses
,”
ASME Turbo Expo
, Paper No. 97-GT-470.
10.
Rife
,
M. E.
,
Barbarossa
,
F.
,
Parry
,
A. B.
,
Green
,
J. S.
, and
di Mare
,
L.
,
2016
, “
Minimisation of Ducted Flow Non-Uniformity Caused by Downstream Blockages
,”
ASME Turbo Expo
, Paper No. GT2016-56199.
11.
di Mare
,
L.
,
Carnevale
,
M.
,
Rife
,
M. E.
,
Kulkarni
,
D.
, and
Northall
,
R.
,
2019
, “
Modelling and Design of LPC Components With Semi-Analytical Models Part I: Model Formulation and Validation
,”
ASME Turbo Expo
, Paper No. GT2019-90479.
12.
Green
,
J. S.
,
2008
, “
Forced Response of a Large Civil Fan Assembly
,”
ASME Turbo Expo
,
Berlin
, Paper No. GT2008-50319.
13.
Harris
,
J. R.
,
Lad
,
B.
, and
Stapelfeldt
,
S.
,
2020
, “
Investigating the Causes of Outlet Guide Vane Buffeting
,”
ASME Turbo Expo
, Paper No. GT2020-16063, pp.
1
10
.
14.
Shahpar
,
S.
,
Giacche
,
D.
, and
Lapworth
,
L.
,
2003
, “
Multi-Objective Design and Optimisation of Bypass Outlet-Guide-Vanes
,”
ASME Turbo Expo
, Paper No. GT2003-38700.
15.
Shahpar
,
S.
,
2005
, “
SOPHY: An Integrated CFD Based Automatic Design Optimisation System
,”
Proceedings of ISABE-2005-1086.
,
Munich, Germany
,
Sept. 4–9
.
16.
Sasaki
,
D.
,
Shahpar
,
S.
, and
Obayashi
,
S.
,
2004
, “
Multi-Objective Optimisation of Low Pressure Compression System
,”
Proceedings of 24th ICAS Conference
,
Yokohama, Japan
,
Aug. 29–Sept. 3
, pp.
1
10
.
17.
Clemen
,
C.
,
Herzog
,
S.
,
Klauke
,
T.
, and
Holewa
,
A.
,
2011
, “
Aero-Mechanical Optimisation of a Structural Fan Outlet Guide Vane
,”
J. Struct. Multidiscipl. Optim.
,
44
(
1
), pp.
125
136
.
18.
Clemen
,
C.
,
Albrecht
,
P.
, and
Herzog
,
S.
,
2012
, “
Systematic Optimisation of a Turbofan Bypass Duct System
,”
ASME Turbo Expo
, Paper No. GT2012-68276.
19.
Barbarossa
,
F.
,
Rife
,
M. E.
,
Carnevale
,
M.
,
Parry
,
A. B.
,
Green
,
J. S.
, and
di Mare
,
L.
,
2017
, “
Fast Optimisation of a Three-Dimensional Bypass System Using a New Aerodynamic Design Method
,”
ASME Turbo Expo
, Paper No. GT2017-63324.
20.
di Mare
,
L.
,
Carnevale
,
M.
,
Rife
,
M. E.
,
Kulkarni
,
D.
, and
Northall
,
R.
,
2019
, “
Modelling and Design of LPC Components With Semi-Analytical Models Part II: Design of Optimal OGV Cascades
,”
ASME Turbo Expo
, Paper No. GT2019-90481.
21.
Sayma
,
A.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2000
, “
An Integrated Non-Linear Approach for Turbomachinery Forced Response Prediction Part I: Formulation
,”
J. Fluids Struct.
,
14
(
1
), pp.
87
101
.
22.
Sayma
,
A. I.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2000
, “
An Integrated Non-Linear Approach for Turbomachinery Forced Response Prediction Part 2: Case Studies
,”
J. Fluids Struct.
,
14
(
1
), pp.
103
125
.
23.
Kulkarni
,
D. Y.
, and
Peng
,
C.
,
2020
, “
On the Probabilistic Endurance Prediction Approach for Turbomachinery Blades and Vanes
,”
ASME Turbo Expo
, Paper No. GT2020-14013, pp.
1
13
.
You do not currently have access to this content.