Abstract

Shrouded stator cavity flow increases the stator total pressure loss, reduces the compressor isentropic efficiency, and thus limits the compressor pressure rise capability. This paper proposes a simplified cavity flow model that consists of flow injection at the stator inlet and flow suction at the stator outlet. Based on this model, a full-factorial parametric study on the leakage flow ratio and the leakage swirl angle is performed at different rotational speeds and incidences. In the first place, the effectiveness of the numerical method is validated against the experimental data based on the full-scale cavity geometry; then, the numerical simulations on the simplified cavity geometry are validated against that of the full-scale one. Results show that the leakage flow ratio plays a dominant role in determining the compressor performance penalty. The isentropic efficiency drops almost linearly with the leakage flow ratio due to deteriorated near-hub separations, and the slope becomes steeper at higher operating speeds and incidences. The leakage swirl angle only has a pronounced effect under a high leakage flow ratio. The efficiency penalty reduces with increasing swirl angle due to an alleviated tangential flow mixing and suppressed near-hub separations. The swirl angle effect is more pronounced at lower incidence conditions. These findings advance the fundamental understanding of shrouded stator cavity flow effects and provide useful guidance for cavity seal designs.

References

1.
Heidegger
,
N.
,
Hall
,
E.
, and
Delaney
,
R.
,
1996
, “
Parameterized Study of High-Speed Compressor Seal Cavity Flow
,” AIAA Paper No. 96–2807.
2.
Wellborn
,
S. R.
, and
Okiishi
,
T. H.
,
1999
, “
The Influence of Shrouded Stator Cavity Flows on Multistage Compressor Performance
,”
ASME J. Turbomach.
,
121
(
3
), pp.
486
497
.
3.
Wellborn
,
S. R.
,
2001
, “
Details of Axial-Compressor Shrouded Stator Cavity Flows
,” ASME Paper No. 2001-GT-0495.
4.
Wellborn
,
S. R.
,
Tolchinsky
,
I.
, and
Okiishi
,
T. H.
,
2000
, “
Modeling Shrouded Stator Cavity Flows in Axial-Flow Compressors
,”
ASME J. Turbomach.
,
122
(
1
), pp.
55
61
.
5.
Lei
,
V. M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
.
6.
Kim
,
J.
,
Song
,
S.
, and
Kim
,
T.
,
2011
, “
Streamwise Evolution of Loss in a Shrouded Axial Compressor Cascade Passage
,”
J. Propuls. Power
,
27
(
4
), pp.
884
889
.
7.
Sohn
,
D. W.
,
Kim
,
T.
, and
Song
,
S. J.
,
2006
, “
Influence of the Leakage Flow Tangential Velocity on the Loss Generation and Leakage Flow Kinematics in Shrouded Axial Compressor Cascades
,” ASME Paper No. GT2006-90979.
8.
Farkas
,
B.
,
Van de Wyer
,
N.
, and
Brouckaert
,
J.-F.
,
2013
, “
Numerical Study on the Effect of Seal Leakage Flow on Low Pressure Axial Compressor Performance
,” ASME Paper No. GT2013-95689.
9.
Babin
,
C.
,
Dumas
,
M.
,
Ottavy
,
X.
, and
Fontaneto
,
F.
,
2021
, “
Numerical Characterisation of a HP Compressor Stage Equipped With a Closed Shrouded Stator Cavity
,” ASME Paper No. GT2020-14908.
10.
Babin
,
C.
,
Ottavy
,
X.
, and
Fontaneto
,
F.
,
2023
, “
Leakage Flow Impact on Shrouded Stator Cavity Flow Topology and Associated High-Speed Axial Compressor Stage Performance
,”
ASME J. Turbomach.
,
145
(
5
), p.
051016
.
11.
Hopfinger
,
M.
, and
Gümmer
,
V.
,
2021
, “
Numerical Investigation of Stator Shroud Leakage Effects in a 1.5-Stage Low-Speed Axial Compressor
,” ETC Paper No. ETC2021-576.
12.
Kim
,
S.
,
Kim
,
K.
, and
Son
,
C.
,
2019
, “
Three-Dimensional Unsteady Simulation of a Multistage Axial Compressor With Labyrinth Seals and Its Effects on Overall Performance and Flow Characteristics
,”
Aerosp. Sci. Technol.
,
86
, pp.
683
693
.
13.
Kamdar
,
N.
,
Lou
,
F.
, and
Key
,
N. L.
,
2022
, “
Details of Shrouded Stator Hub Cavity Flow in a Multistage Axial Compressor Part 2: Leakage Flow Characteristics in Stator Wells
,”
ASME J. Eng. Gas. Turbines Power
,
144
(
1
), p.
011027
.
14.
Flores
,
D.
, and
Seume
,
J. R.
,
2014
, “
Selecting Cavity Geometries for Improving the Aerodynamic Performance of an Axial Compressor
,” ASME Paper No. GT2014-25328.
15.
Flores
,
D.
, and
Seume
,
J. R.
,
2015
, “
The Influence of Labyrinth Flows on the Aerodynamic Performance of an Axial Compressor
,” ETC Paper No. ETC2015-117.
16.
De Dominicis
,
I.
,
Robens
,
S.
,
Wolfrum
,
N.
,
Lange
,
M.
, and
Gümmer
,
V.
,
2021
, “
Interacting Effects in a Multistage Axial Compressor Using Shrouded and Cantilevered Stators
,”
J. Propuls. Power
,
37
(
4
), pp.
615
624
.
17.
Lee
,
J.
,
Lim
,
S.
,
Shin
,
H.-W.
,
Lee
,
S.
, and
Song
,
S. J.
,
2022
, “
Periodic Unsteady Kinematics of Hub Flows in a Shrouded Multistage Compressor
,”
ASME J. Eng. Gas. Turbines Power
,
144
(
4
), p.
041011
.
18.
Kato
,
D.
,
Yamagami
,
M.
,
Tsuchiya
,
N.
, and
Kodama
,
H.
,
2011
, “
The Influence of Shrouded Stator Cavity Flows on the Aerodynamic Performance of a High-Speed Multistage Axial-Flow Compressor
,” ASME Paper No. GT2011-46300.
19.
Yoon
,
S.
,
Selmeier
,
R.
,
Cargill
,
P.
, and
Wood
,
P.
,
2015
, “
Effect of the Stator Hub Configuration and Stage Design Parameters on Aerodynamic Loss in Axial Compressors
,”
ASME J. Turbomach.
,
137
(
9
), p.
091001
.
20.
Klausmann
,
F.
,
Franke
,
D.
,
Foret
,
J.
, and
Schiffer
,
H.-P.
,
2022
, “
Transonic Compressor Darmstadt - Open Test Case Introduction of the TUDa Open Test Case
,”
J. Glob. Power Propuls. Soc.
,
6
, pp.
318
329
.
21.
Klausmann
,
F.
,
Kilian
,
N.
,
He
,
X.
,
Franke
,
D.
,
Schmidt
,
B.
, and
Schiffer
,
H.-P.
,
2023
, “
Transonic Compressor Darmstadt Open Test Case: Experimental Investigation of Stator Secondary Flows and Hub Leakage
,” ASME Paper No. GT2023-103502.
22.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid. Mech.
,
403
, pp.
89
132
.
23.
He
,
X.
,
Zhu
,
M.
,
Xia
,
K.
,
Klausmann
,
F.
,
Teng
,
J.
, and
Vahdati
,
M.
,
2023
, “
Validation and Verification of RANS Solvers for TUDa-GLR-OpenStage Transonic Axial Compressor
,”
J. Glob. Power Propuls. Soc.
,
7
, pp.
13
29
.
24.
Xia
,
K.
,
He
,
X.
,
Zhu
,
M.
,
Klausmann
,
F.
,
Teng
,
J.
, and
Vahdati
,
M.
,
2023
, “
Endwall Geometric Uncertainty and Error on the Performance of TUDa-GLR-OpenStage Transonic Axial Compressor
,”
J. Glob. Power Propuls. Soc.
,
7
, pp.
113
126
.
You do not currently have access to this content.