Abstract

Unsteadiness, in the form of both broadband background disturbances and discrete coherent wakes, can have a strong effect on the performance of turbomachinery blades. The influence of the incoming flow has received much interest as it inevitably affects the blade boundary layers and develops as it passes through the machine. In the present work, we investigate the effect of unsteady flow on high-pressure turbines (HPTs), using high-fidelity datasets produced by wall resolved large-eddy simulation of an HPT stage. The effects of incident wakes from an upstream stator, compounded by the presence of freestream turbulence, on the downstream rotor are investigated. Based on analyzing cases with different turbulence intensities and length scales prescribed at the inlet, we show that changing the freestream turbulence characteristics has a direct effect on the unsteady behavior of the stator wakes. As a result, the performance of the rotor is also significantly affected. By detailing the influence of the wake–turbulence interaction, we aim to distinguish driving forces on rotor performance, be it changes in the incident wakes or direct influence from the freestream turbulence. Furthermore, the aerothermal behaviors of the rotor blades have been extensively investigated, showing that the blade boundary layers on the suction and pressure sides respond differently to external disturbances. The insights gained can provide designers with guidelines in understanding the unsteady flow effects of a given flow state, and how the unsteadiness present, either broadband or deterministic, will affect the performance of downstream blades.

References

1.
Pichler
,
R.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Ong
,
J.
,
2018
, “
Highly Resolved Large Eddy Simulation Study of Gap Size Effect on Low-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
2
), p.
021003
.
2.
Wu
,
X.
, and
Durbin
,
P.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.
3.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
4.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2003
, “
The Transition Mechanism of Highly-Loaded LP Turbine Blades
,”
ASME Turbo Expo
, Paper No. GT2003-38304.
5.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
6.
Michelassi
,
V.
,
Wissink
,
J. G.
, and
Rodi
,
W.
,
2003
, “
Direct Numerical Simulation, Large Eddy Simulation and Unsteady Reynolds-Averaged Navier—Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade: A Comparison
,”
Proc. Inst. Mech. Eng. Part A
,
217
(
4
), pp.
403
411
.
7.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Nash
,
T. C.
,
Rice
,
M. J.
, and
Grover
,
E. A.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,”
ASME Turbo Expo
, Paper No. GT2006-90666.
8.
Michelassi
,
V.
,
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), pp.
71005
71012
.
9.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R. D.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
10.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid Mech.
,
54
, pp.
255
285
.
11.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow Turbul. Combust.
,
102
(
4
), pp.
797
848
.
12.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2021
, “
High-Fidelity Simulations of a High-Pressure Turbine Stage: Effects of Reynolds Number and Inlet Turbulence
,”
ASME Turbo Expo
, Paper No. GT2021-58995.
13.
Arts
,
T.
,
Lambertderouvroit
,
M.
, and
Rutherford
,
A. W.
,
1990
, “Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade,” Tech. Rep.,
von Karman Institute for Fluids Dynamics
,
Brussels
.
14.
Kopriva
,
J. E.
,
2017
, “
The Role of Free-Stream Turbulence on High Pressure Turbine Aero-thermal Stage Interaction
,” PhD thesis,
Northeastern University
,
Boston, MA
.
15.
Johnstone
,
R.
,
Chen
,
L.
, and
Sandberg
,
R. D.
,
2015
, “
A Sliding Characteristic Interface Condition for Direct Numerical Simulations
,”
Comput. Fluids
,
107
, pp.
165
177
.
16.
Deuse
,
M.
, and
Sandberg
,
R. D.
,
2020
, “
Implementation of a Stable High-Order Overset Grid Method for High-Fidelity Simulations
,”
Comput. Fluids
,
211
, p.
104449
.
17.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
18.
Kennedy
,
C. A.
,
Carpenter
,
M. H.
, and
Lewis
,
R. M.
,
2000
, “
Low-Storage, Explicit Runge–Kutta Schemes for the Compressible Navier–Stokes Equations
,”
Appl. Numer. Math.
,
35
(
3
), pp.
177
219
.
19.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
20.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2020
, “
Bypass Transition in Boundary Layers Subject to Strong Pressure Gradient and Curvature Effects
,”
J. Fluid Mech.
,
888
, p.
A4
.
21.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2021
, “
High Fidelity Simulations of a High Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses
,”
ASME J. Turbomach.
,
143
(
9
), p.
091002
.
22.
Leggett
,
J.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Richardson
,
E. S.
,
2018
, “
Loss Prediction in an Axial Compressor Cascade at Off-Design Incidences With Free Stream Disturbances Using Large Eddy Simulation
,”
ASME J. Turbomach.
,
140
(
7
), p.
071005
.
23.
Leggett
,
J.
,
Richardson
,
E. S.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Michelassi
,
V.
, and
Sandberg
,
R. D.
,
2020
, “
Loss Analysis of Unsteady Turbomachinery Flows Based on the Mechanical Work Potential
,”
ASME J. Turbomach.
,
142
(
11
), p.
111009
.
24.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
.
25.
Kurosaka
,
M.
,
Gertz
,
J. B.
,
Graham
,
J. E.
,
Goodman
,
J. R.
,
Sundaram
,
P.
,
Riner
,
W. C.
,
Kuroda
,
H.
, and
Hankey
,
W. L.
,
1987
, “
Energy Separation in a Vortex Street
,”
J. Fluid Mech.
,
178
, pp.
1
29
.
26.
Leggett
,
J.
, and
Sandberg
,
R. D.
,
2020
, “
Exploring the Presence of Pressure Waves in Axial Compressor Cascades
,”
ASME Turbo Expo
, Paper No. GT2020-16022.
27.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
28.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4-Composite Picture
,”
ASME J. Turbomach.
,
119
(
1
), pp.
114
127
.
29.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 4 of 4-Computations and Analyses
,”
ASME J. Turbomach.
,
119
(
1
), pp.
128
139
.
30.
Durbin
,
P.
, and
Wu
,
X.
,
2007
, “
Transition Beneath Vortical Disturbances
,”
Annu. Rev. Fluid Mech.
,
39
, pp.
107
128
.
31.
Wu
,
X.
,
Moin
,
P.
, and
Hickey
,
J. P.
,
2014
, “
Boundary Layer Bypass Transition
,”
Phys. Fluids
,
26
, p.
91104
.
32.
Dupuy
,
D.
,
Gicquel
,
L.
,
Odier
,
N.
,
Duchaine
,
F.
, and
Arts
,
T.
,
2020
, “
Analysis of the Effect of Intermittency in a High-Pressure Turbine Blade
,”
Phys. Fluids
,
32
, p.
095101
.
You do not currently have access to this content.