Abstract

A wide variety of pin-fins have been used to enhance heat transfer in internal cooling channels. However, due to their large blockage in the flow direction, they result in an undesirable high pressure drop. This experimental study aims to reduce pressure drop while increasing the heat transfer surface area by utilizing strip-fins in converging internal cooling channels. The channel is designed with a trapezoidal cross section, converges in both transverse and longitudinal directions, and is also skewed β=120deg with respect to the direction of rotation to model a trailing edge cooling channel. Only the leading and trailing surfaces of the channel are instrumented, and each surface is divided into 18 isolated copper plates to measure the regionally averaged heat transfer coefficient. Utilizing pressure taps at the inlet and outlet of the channel, the pressure drop is obtained. Three staggered arrays of strip-fins are investigated: one full-height configuration and two partial fin height arrangements (Sz = 2 mm and 1 mm). In all cases, the strip-fins are 2 mm wide (W) and 10 mm long (Lf) in the flow direction. The fins are spaced such that Sy/Lf = 1 in the streamwise direction. However, due to the convergence, the spanwise spacing, Sx/W, was varied from 8 to 6.2 along the channel. The rotation number of the channel varied up to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300 rpm. It is found that the full-height strip-fin channel results in a more nonuniform spanwise heat transfer distribution than the partial-height strip-fin channel. Both trailing and leading surface heat transfer coefficients are enhanced under rotation conditions. The 2 mm height partial strip-fin channel provided the best thermal performance, and it is comparable to the performance of the converging channels with partial-length circular pins. The strip-fin channel can be a design option when the pressure drop penalty is a major concern.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2002
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press, Taylor and Francis
,
New York
.
2.
Brun
,
K.
, and
Kurz
,
R.
,
2019
,
Intoducion to Gas Turbine Theory
, 3rd ed.,
Solar Turbines Incorporated
,
U.S.A
.
3.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Pennington
,
J. W.
,
1983
, “
Heat Transfer and Flow Friction Characteristics of Very Rough Transverse Ribbed Surfaces With and Without Pin Fins
,”
ASME-JSME Therm. Eng. Joint Conf.
,
1
, pp.
429
436
.
4.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
257
263
.
5.
Ames
,
F. E.
,
Dvorak
,
L. A.
, and
Morrow
,
M. J.
,
2005
, “
Turbulent Augmentation of Internal Convection Over Pins in Staggered-Pin Fin Arrays
,”
ASME J. Turbomach.
,
127
(
1
), pp.
183
190
.
6.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Flowfield Measurements in a Single Row of Low Aspect Ratio Pin Fins
,”
ASME J. Turbomach.
,
134
(
5
), p.
051034
.
7.
Steuber
,
G. D.
, and
Metzger
,
D. E.
,
1986
, “
Heat Transfer and Pressure Loss Performance for Families of Partial Length Pin Fin Arrays in High Aspect Ratio Rectangular Ducts
,” Heat Transfer 1986;
Proceedings of the Eighth International Conference
, Vol.
6
,
San Francisco, CA
,
Aug. 17–22
, pp.
2915
2920
. https://ui.adsabs.harvard.edu/abs/1986hetr.conf.2915S/abstract
8.
Arora
,
S. C.
, and
Abdel-Messeh
,
W.
,
1990
, “
Characteristics of Partial Length Circular Pin Fins As Heat Transfer Augmentors for Airfoil Internal Cooling Passages
,”
ASME J. Turbomach.
,
112
(
3
), pp.
559
565
.
9.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
.
10.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
.
11.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
5
), pp.
458
471
.
12.
Kirsch
,
K. L.
,
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2014
, “
Comparison of Pin Surface Heat Transfer in Arrays of Oblong and Cylindrical Pin Fins
,”
ASME J. Turbomach.
,
136
(
4
), p.
041015
.
13.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2015
, “
Heat Transfer Measurements of Oblong Pins
,”
ASME J. Turbomach.
,
137
(
7
), p.
071004
.
14.
Nuntakulamarat
,
M.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
,
2020
, “
Heat Transfer and Pressure Drop Measurements in a High Aspect Ratio Channel With Circular Pins and Strip Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031019
.
15.
Wright
,
L. M.
,
Liu
,
Y.-H.
,
Han
,
J.-C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat. Transfer-Trans. ASME
,
130
(
7
), p.
071701
.
16.
Rallabandi
,
A. P.
,
Liu
,
Y.-H.
, and
Han
,
J.-C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.
17.
Brown
,
A.
,
Mandjikas
,
B.
, and
Mudyiwa
,
J. M.
,
1980
, “Blade Trailing Edge Heat Transfer,” ASME Paper No. 80-GT-45.
18.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
,
1986
, “Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence,” ASME Paper No. 86-GT-132.
19.
Sahin
,
I.
,
Chen
,
I.-L.
,
Wright
,
L. M.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
,
2021
, “
Heat Transfer in Rotating, Trailing Edge, Converging Channels With Smooth and Pin-Fins
,”
ASME J. Turbomach.
,
143
(
7
), p.
071007
.
20.
Sahin
,
I.
,
Chen
,
I.-L.
,
Wright
,
L. M.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
,
2021
, “
Heat Transfer in Rotating, Trailing Edge, Converging Channels With Partial Length Pin-Fins
,”
ASME J. Turbomach.
,
143
(
6
), p.
061009
.
21.
Sahin
,
I.
,
Chen
,
A.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2020
, “
Effect of 45-deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio From 4:1 to 2:1
,”
ASME J. Turbomach.
,
142
(
7
), p.
071003
.
22.
Han
,
J. C.
, and
Wright
,
L. M.
,
2020
,
Experimental Methods in Heat Transfer and Fluid Mechanics
, 1st ed.,
CRC Press, Taylor and Francis
,
New York
.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
24.
Asako
,
Y.
, and
Faghri
,
M.
,
1988
, “
Three-dimensional Laminar Heat Transfer and Fluid Flow Characteristics in the Entrance Region of a Rhombic Duct
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
4a
), pp.
855
861
.
You do not currently have access to this content.