Abstract

In the present work, URANS simulations are presented to describe the unsteady interaction process between the flow ingested/ejected from a cavity system and the main flow evolving into a low-pressure turbine stage. Particular care is posed on the analysis of the loss generation mechanisms acting outside the stator row and in the rear part of the axial gap separating the cavity flow ejection section and the leading edge plane of the downstream rotor row. The simulated geometry reproduces a typical engine cavity configuration, with upstream and downstream rotor rows reproduced by means of moving bars. Experimental results have been used to validate the simulations. These experimental data cannot explain and quantify alone the overall interaction process between the cavity flows and the main flow. The results of a simulation made by removing the domain of the cavity have been employed in order to better highlight and quantify the effects due to main flow and cavity flows interaction on total pressure loss. A deep inspection of the loss amount along the axial direction makes evident that losses generated in the vane row are basically increased prior to entering into the downstream rotor bars, due to cavity main flow interaction.

References

1.
Denton
,
J.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Pfau
,
A.
,
Treiber
,
M.
,
Sell
,
M.
, and
Gyarmathy
,
G.
,
2000
, “
Flow Interaction From the Exit Cavity of an Axial Turbine Blade Row Labyrinth Seal
,”
ASME J. Turbomach.
,
123
(
2
), pp.
342
352
.
3.
Rosic
,
B.
,
Denton
,
J. D.
, and
Curtis
,
E. M.
,
2008
, “
The Influence of Shroud and Cavity Geometry on Turbine Performance: An Experimental and Computational Study—Part I: Shroud Geometry
,”
ASME J. Turbomach.
,
130
(
4
), p. 041001.
4.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p. 051003.
5.
Hunter
,
S. D.
, and
Manwaring
,
S. R.
,
2000
, “
Endwall Cavity Flow Effects on Gaspath Aerodynamics in an Axial Flow Turbine: Part I—Experimental and Numerical Investigation
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
.
6.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
Low-Pressure Turbine End Wall Design Optimisation and Experimental Verification in the Presence of Purge Flow
,”
20th International Symposium on Air Breathing Engines 2011: ISABE 2011
,
Gothenburg, Sweden
,
Sept. 12–16
,
American Institute of Aeronautics and Astronautics
, pp.
1825
1835
.
7.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
De Vito
,
L.
,
2005
, “
Interaction of Shroud Leakage Flow and Main Flow in a Three-Stage LP Turbine
,”
ASME J. Turbomach.
,
127
(
4
), pp.
649
658
.
8.
Ong
,
J. H.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2006
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air, American Society of Mechanical Engineers Digital Collection
,
Barcelona, Spain
,
May 8–11
, pp.
915
924
.
9.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Behavior of Turbine Center Frames Under the Presence of Purge Flows
,”
Turbo Expo: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26–30
, Vol. 50787, American Society of Mechanical Engineers.
10.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p. 021021.
11.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.
12.
Schädler
,
R.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Schmid
,
G.
, and
Prabhu
,
S. B.
,
2017
, “
Novel High-Pressure Turbine Purge Control Features for Increased Stage Efficiency
,” GPPF 2017.
13.
Chilla
,
M.
,
Hodson
,
H.
,
Pullan
,
G.
, and
Newman
,
D.
,
2016
, “
High-Pressure Turbine Rim Seal Design for Increased Efficiency
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
, Paper No. GT2016-57495.
14.
Wang
,
C.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2012
, “
Rim Seal Ingestion in a Turbine Stage From 360-Degree Time Dependent Numerical Simulations
,”
ASME Turbo Expo 2012: Turbomachinery Technical Conference and Exposition
, Paper No. GT2012-68193.
15.
O’Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2010
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
Turbo Expo: Power for Land, Sea, and Air
, pp.
1155
1165
, Paper No. GT2010-22962.
16.
Bavassano
,
F.
,
Mantero
,
M.
,
Gasnier
,
T.
, and
Ronconi
,
E.
,
2016
, “
Analysis of Heavy Duty Gas Turbine Stator–Rotor Cavity Through 3d CFD-1D Fluid Network—Field Measurements Combined Approach
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
, Paper No. GT2016-57629.
17.
Schuler
,
P.
,
Kurz
,
W.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2010
, “
The Influence of Different Rim Seal Geometries on Hot-Gas Ingestion and Total Pressure Loss in a Low-Pressure Turbine
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, Vol. 44021, pp.
1123
1134
.
18.
Chengappa
,
M. B.
,
Srinivasan
,
K.
,
Chouhan
,
R.
,
Bather
,
S.
, and
Blidmark
,
E.
,
2017
, “
Computational Studies on High Pressure Turbine Rim Seal Cavities
,”
Proceedings of the Gas Turbine India Conference
, Paper No. GTINDIA2017-4638.
19.
Da Soghe
,
R.
,
Facchini
,
B.
,
Innocenti
,
L.
, and
Micio
,
M.
,
2011
, “
Analysis of Gas Turbine Rotating Cavities by a One-Dimensional Model: Definition of New Disk Friction Coefficient Correlations Set
,”
ASME J. Turbomach.
,
133
(
2
), p. 021020.
20.
Darby
,
P.
,
Mesny
,
A.
,
De Cosmo
,
G.
,
Carnevale
,
M.
,
Lock
,
G.
,
Scobie
,
J.
, and
Sangan
,
C.
,
2020
, “
Conditioning of Leakage Flows in Gas Turbine Rotor–Stator Cavities
,”
Proceedings of the ASME Turbo Expo 2020
, ASME Paper No. GT2020-14308.
21.
Guida
,
R.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2018
, “
New Facility Setup for the Investigation of Cooling Flow, Viscous and Rotational Effects on the Interstage Seal Flow Behavior of a Gas Turbine
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
, Paper No. GT2018-75630.
22.
Simoni
,
D.
,
Berrino
,
M.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade Under Steady and Unsteady Incoming Flow Conditions
,”
ASME J. Turbomach.
,
137
(
7
), p. 071009.
23.
Opoka
,
M. M.
, and
Hodson
,
H. P.
,
2008
, “
Transition on the T106 LP Turbine Blade in the Presence of Moving Upstream Wakes and Downstream Potential Fields
,”
ASME J. Turbomach.
,
130
(
4
), p. 041017.
24.
Simoni
,
D.
,
Zunino
,
P.
,
Lengani
,
D.
, and
Guida
,
R.
,
2017
, “
Design and Commissioning of a Rotating Turbine Rig for Cavity Flows Investigation
,” ISABE-2017-21499.
25.
NUMECA Int. S.A.
,
Brussels
,
2020
, “
Fine/Turbo User Manual
.”
26.
Jameson
,
A.
, and
Baker
,
T.
,
1984
, “
Multigrid Solution of the Euler Equations for Aircraft Configurations
,”
22nd Aerospace Sciences Meeting
, p.
93
.
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
28.
Wellborn
,
S. R.
,
Tolchinsky
,
I.
, and
Okiishi
,
T. H.
,
2000
, “
Modeling Shrouded Stator Cavity Flows in Axial-Flow Compressors
,”
ASME J. Turbomach.
,
122
(
1
), pp.
55
61
.
29.
Herwig
,
H.
, and
Kock
,
F.
,
2007
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.
30.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
The Effect of Stator–Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, Vol. 4241, pp.
789
798
.
31.
Zlatinov
,
M. B.
,
Sooi Tan
,
C.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p. 061027.
You do not currently have access to this content.