Abstract

Few studies in the open literature have studied the effect of thermal barrier coatings (TBC) when used in combination with shaped hole film cooling and enhanced internal cooling techniques. The current study presents Reynolds-averaged Navier–Stokes (RANS) conjugate heat transfer simulations that identify trends in cooling design performance as well as experimental measurements of overall effectiveness using a flat-plate matched-Biot number model with a simulated TBC layer of 0.42D thickness, where D is the film cooling hole diameter. Coolant is fed to the film cooling holes in a co-flow configuration, and the results of both the smooth and rib-turbulated channels are compared. At a constant coolant flow rate, enhanced internal cooling was found to provide a 44% increase in spatially-averaged overall effectiveness, ϕ¯¯, without a TBC. The results show that the addition of a TBC can raise ϕ¯¯ on a film-cooled component surface by 47%. The optimum velocity ratio was found to decrease with the addition of enhanced cooling techniques and a TBC as the film provided minimal benefit at the expense of reduced internal cooling. While the computational results closely identified trends in overall system performance without a TBC, the model over-predicted effectiveness on the metal–TBC interface. The results of this study will inform turbine component design as material science advances increase the reliability of the TBC.

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
Paper No. V001T51A001
.
2.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
3
), pp.
590
596
.
3.
Stewart
,
W. R.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
Effects of TBC Thickness on an Internally and Film Cooled Model Turbine Vane
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf
,
Germany
,
Paper No. V05BT13A058
.
4.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
, and
Laskowski
,
G. M.
,
2013
, “
Overall and Adiabatic Effectiveness Values on a Scaled Up, Simulated Gas Turbine Vane
,”
ASME J. Turbomach.
,
135
(
5
), p.
051017
.
5.
Na
,
S.
,
Williams
,
B.
,
Dennis
,
R. A.
,
Bryden
,
K. M.
, and
Shih
,
T. I.-P.
,
2007
, “
Internal and Film Cooling of a Flat Plate With Conjugate Heat Transfer
,”
ASME Turbo Expo: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
, pp.
545
554
.
6.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2011
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p.
011014
.
7.
Davidson
,
F. T.
,
Dees
,
J. E.
, and
Bogard
,
D. G.
,
2011
, “
An Experimental Study of Thermal Barrier Coatings and Film Cooling on an Internally Cooled Simulated Turbine Vane
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, BC, Canada
,
June 6–10
, pp.
559
570
.
8.
Davidson
,
F. T.
,
KistenMacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,”
ASME J. Turbomach.
,
136
(
4
), p.
041007
.
9.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
10.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
11.
Jones
,
F. B. I.
,
2020
, “
Investigation of Inlet and Diffuser Geometry Modifications on Film Cooling Performance of Additively Manufactured Shaped Holes in Crossflow
,”
Ph.D. thesis
,
University of Texas at Austin
,
Austin, TX
.
12.
Jones
,
F. B. I.
,
Fox
,
D.
,
Oliver
,
T.
, and
Bogard
,
D. G.
,
2021
, “
Parametric Optimization of Film Cooling Hole Geometry
,”
ASME Turbo Expo 2021: Power for Land, Sea, and Air
,
Virtual, Online
,
June 7–11
.
13.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane
,”
ASME J. Turbomach.
,
134
(
6
), p.
061003
.
14.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley and Sons
,
Hoboken, NJ
.
15.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.
16.
Meier
,
S. M.
, and
Gupta
,
D. K.
,
1994
, “
The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
250
257
.
17.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
18.
TCPoly
,
2020
, “
Technial Datasheet: Ice9 rigid
.” https://tcpoly.com/wp-content/uploads/2020/08/TDS˙ice9˙Rigid.pdf, August. Accessed September 1, 2020.
19.
Fox
,
D. W.
,
Jones
,
F. B.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2019
, “
Rib Turbulator Effects on Crossflow-Fed Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
141
(
3
), p.
031013
.
20.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
21.
Shih
,
T.-H.
,
Liou
,
W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
, “
A New kε Eddy Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
NASA Memorandum 106721
.
22.
Jones
,
F. B.
,
Fox
,
D. W.
, and
Bogard
,
D. G.
,
2019
, “
Evaluating the Usefulness of RANS in Film Cooling
,”
ASME Turbo Expo 2019: Turbine Technical Conference and Exposition
,
Phoenix, AZ
,
American Society of Mechanical Engineers
,
Paper No. V05AT12A019
.
23.
Oberkampf
,
W.
, and
Roy
,
C.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge
.
24.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
25.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME Turbo Expo 1997: Power for Land, Sea, and Air
,
Orlando, FL
,
Paper No. V003T09A030
.
You do not currently have access to this content.