Abstract

Ceramic matrix composite (CMC) parts create the opportunity for increased turbine entry temperatures within gas turbines. To achieve the highest temperatures possible, film cooling will play an important role in allowing turbine entry temperatures to exceed acceptable surface temperatures for CMC components, just as it does for the current generation of gas turbine components. Film cooling over a CMC surface introduces new challenges including roughness features downstream of the cooling holes and changes to the hole exit due to uneven surface topography. To better understand these impacts, this study presents flowfield and adiabatic effectiveness computational fluid dynamics (CFD) for a 7–7–7 shaped film cooling hole with a 5 Harness Satin CMC weave at two orientations. To understand the ability of steady RANS to predict flow and convective heat transfer over a CMC surface, the weave surface is initially simulated without film and compared to previous experimental results. The simulation of the weave orientation of 0 deg, with fewer features projecting into the flow, matches fairly well to the experiment and demonstrates a minimal impact on film cooling leading to only slightly lower adiabatic effectiveness compared to a smooth surface. However, the simulation of the 90-deg orientation with a large number of protruding features does not match the experimentally observed surface heat transfer. The additional protruding surface produces degraded film cooling performance at low blowing ratios but is less sensitive-to-blowing ratio, leading to an improved relative performance at higher blowing ratios, particularly in regions far downstream of the hole.

References

1.
Walock
,
M. J.
,
Heng
,
V.
,
Nieto
,
A.
,
Ghoshal
,
A.
,
Murugan
,
M.
, and
Driemeyer
,
D.
,
2018
, “
Ceramic Matrix Composite Materials for Engine Exhaust Systems on Next-Generation Vertical Lift Vehicles
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p. 102101.
2.
Cinibulk
,
M. K.
,
Apostolov
,
Z. D.
,
Boakye
,
E. E.
,
Key
,
T. S.
, and
King
,
D. S.
,
2018
, “
Constituent Development for Higher-Temperature Capable Ceramic Matrix Composites
,”
Proceedings of the ASME Turbo Expo
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-76835.
3.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Quach
,
S.
, and
Vincent
,
T.
,
2021
, “
Experimental Heat Transfer and Boundary Layer Measurements on a Ceramic Matrix Composite Surface
,”
ASME J. Turbomach.
,
143
(
6
), p. 061010.
4.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
,
1985
, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
111
116
.
5.
Barlow
,
D. N.
, and
Kim
,
Y. W.
,
1995
, “
Effect of Surface Roughness on Local Heat Transfer and Film Cooling Effectiveness
,”
Proceedings of the ASME Turbo Expo
,
Huston, TX
,
June 5–8
, ASME Paper No. 95-GT-14.
6.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Surface Roughness on Film Cooling
,”
Proceedings of ASME Turbo Expo
,
Birmingham, UK
,
June 10–13
, ASME Paper No. 96-GT-299.
7.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Free-Stream Turbulence Adn Surface Roughness on Film Cooling
,”
Proceedings of the ASME Turbo Expo
,
Birmingham, UK
,
June 10–13
, ASME Paper No. 96-GT-462.
8.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p. 021009.
9.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p. 021004.
10.
Wang
,
Z. J.
,
Chi
,
X. K.
,
Shih
,
T.
, and
Bons
,
J.
,
2004
, “
Direct Simulation of Surface Roughness Effects with RANS and DES Approaches on Viscous Adaptive Cartesian Grids
,”
Proceedings of the 34th AIAA Fluid Dynamics Conference and Exhibit
,
Portland, OR
,
June 28–July 1
, AIAA Paper No. 2004-2420.
11.
Bons
,
J. P.
,
McClain
,
S. T.
,
Wang
,
Z. J.
,
Chi
,
X.
, and
Shih
,
T. I.
,
2008
, “
A Comparison of Approximate Versus Exact Geometrical Representations of Roughness for CFD Calculations of Cf and St
,”
ASME J. Turbomach.
,
130
(
2
), p.
021024
.
12.
Hanson
,
D. R.
,
McClain
,
S. T.
,
Snyder
,
J. C.
,
Kunz
,
R. F.
, and
Thole
,
K. A.
,
2019
, “
Flow in a Scaled Turbine Coolant Channel with Roughness Due to Additive Manufacturing
,”
Proceedings of the ASME Turbo Expo
, ASME Paper No. GT2019-90931.
13.
Kapsis
,
M.
, and
He
,
L.
,
2018
, “
Analysis of Aerothermal Characteristics of Surface Microstructures
,”
ASME J. Fluids Eng.
,
140
(
5
), p. 051104.
14.
Kohli
,
A.
, and
Thole
,
K. A.
,
1998
, “
Entrance Effects on Diffused Film-Cooling Holes
,”
Proceedings of the ASME Turbo Expo
,
Stockholm, Sweden
,
June 2–5
, ASME Paper No. 98-GT-402.
15.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2017
, “
The Effect of a Meter-Diffuser Offset on Shaped Film Cooling Hole Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
139
(
9
), p.
091012
.
16.
Jones
,
F. B.
,
Fox
,
D. W.
, and
Bogard
,
D. G.
,
2019
, “
Evaluating the Usefulness of RANS in Film Cooling
,”
Proceedings of the ASME Turbo Expo
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-91788.
17.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2007
, “
CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded in Narrow and Wide Transverse Trenches
,”
Proceedings of the ASME Turbo Expo
,
Montreal, Canada
,
May 14–17
, ASME Paper No. GT2007-2800.
18.
Haydt
,
S.
, and
Lynch
,
S.
,
2019
, “
Cooling Effectiveness for a Shaped Film Cooling Hole at a Range of Compound Angles
,”
ASME J. Turbomach.
,
141
(
4
), p.
041005
.
19.
Nemeth
,
N. N.
,
Mital
,
S. K.
, and
Lang
,
J.
,
2010
, “
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites
,”
NASA Report No. NASA T/M 2010-216250
.
20.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
Proceedings of the ASME Turbo Expo
,
Dusseldorf, Germany
,
June 16–20
, ASME Paper No. GT2014-25992.
21.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2014
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p. 061003.
22.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2005
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Proceedings of the ASME Turbo Expo
,
Reno-Tahoe, NV
,
June 6–9
, ASME Paper No. GT2005-68431.
23.
Hoda
,
A.
, and
Acharya
,
S.
,
1999
, “
Predictions of a Film Coolant Jet in Crossflow With Different Turbulence Models
,”
ASME J. Turbomach.
,
122
(
3
), pp.
558
569
.
24.
Ferguson
,
J. D.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
1998
, “
Performance of Turbulence Models and Near-Wall Treatments in Discrete Jet Film Cooling Simulations
,”
Proceedings of the ASME Turbo Expo
,
Stockholm, Sweden
,
June 2–5
, ASME Paper No. 98-GT-438.
25.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
.
You do not currently have access to this content.