Abstract

The performance of axial diffusers installed downstream of heavy duty gas turbines is mainly affected by the turbine load. Thereby the outflow varies in Mach number, total pressure distribution, swirl and its tip leakage flow in particular. To investigate the performance of a diffuser at different load conditions, a generic diffuser geometry has been designed at ITSM which is representative for current heavy duty gas turbine diffusers. Results are presented for three different operating conditions, each with and without tip flow, respectively. Part-load (PL), design-load (DL) and over-load (OL) operating conditions are defined and varied at the diffuser inlet in terms of Mach number, total pressure distribution, and swirl. Each operating point is investigated experimentally and numerically and assessed based on its flow field as well as the pressure recovery. The diffuser performance shows a strong dependency on the inlet swirl and total pressure profile. A superimposed tip flow only influences the flow field significantly when the casing flow is weakened due to casing separation. In those cases, pressure recovery increases with additional tip flow. There is a reliable prediction of the computational fluid dynamics (CFD) simulations at design-load. At part-load, CFD overpredicts the strut separation, resulting in an underpredicted overall pressure recovery. At over-load, CFD underpredicts the separation extension in the annular diffuser but overpredicts the hub wake. This leads to a better flow control in CFD with the result of an overpredicted overall pressure recovery.

References

1.
Kline
,
S. J.
,
Abbott
,
D. E.
, and
Fox
,
R. W.
,
1959
, “
Optimum Design of Straight-Walled Diffusers
,”
ASME J. Basic Eng.
,
81
, pp.
321
331
.
2.
Reneau
,
L. R.
,
Johnston
,
J. P.
, and
Kline
,
S. J.
,
1967
, “
Performance and Design of Straight, Two-Dimensional Diffusers
,”
ASME J. Basic Eng.
89
(
1
), pp.
141
150
.
3.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
,
Fluid Mechanics of Internal Flow
,
G.
Sovran
, ed.,
Elsevier Publishing Company
,
Amsterdam, The Netherlands
, pp.
270
319
.
4.
Japikse
,
D.
, and
Baines
,
N. C.
,
1998
,
Diffuser Design Technology
,
Concepts ETI Press
,
White River Junction, VT
.
5.
Ubertini
,
S.
, and
Desideri
,
U.
,
2000
, “
Experimental Performance Analysis of an Annular Diffuser With and Without Struts
,”
Exp. Therm. Fluid Sci.
,
22
(
3–4
), pp.
183
195
.
6.
Fleige
,
H. U.
,
2002
, “
Experimentelle und numerische Untersuchungen am Modell eines Turbinenaustrittsdiffusors
,”
Fortschritt-Berichte 7 Nr. 442, VDI Verlag, Düsseldorf
.
7.
Vassiliev
,
V.
,
Irmisch
,
S.
, and
Claridge
,
M.
,
2003
, “
Experimental and Numerical Investigation of the Impact of Swirl on the Performance of Industrial Gas Turbines Exhaust Diffusers
,”
Proceedings of ASME Turbo Expo 2003
,
No. GT2003-38424
.
8.
Schäfer
,
P.
,
2016
, “
Verbesserung des Druckrückgewinns in axialen Kraftwerksdiffusoren
,”
Ph.D. thesis
,
Ruhr-University of Bochum
,
Bochum
.
9.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Bettini
,
C.
,
Canelli
,
C.
,
Cecchi
,
S.
, and
Daccà
,
F.
,
2017
, “
Investigation of the Flow Field in a Gas Turbine Exhaust Diffuser at Design and Part Load Conditions
,”
Proceedings of 1st Global Power and Propulsion Forum 2017
,
No. GPPF-2017-32
.
10.
Hirschmann
,
A.
,
Volkmer
,
S.
,
Schatz
,
M.
,
Finzel
,
C.
,
Casey
,
M.
, and
Montgomery
,
M.
,
2012
, “
The Influence of the Total Pressure Profile on the Performance of Axial Gas Turbine Diffusers
,”
ASME J. Turbomach.
,
134
, p.
021017
.
11.
Volkmer
,
S.
,
Hirschmann
,
A.
,
Casey
,
M.
, and
Montgomery
,
M.
,
2011
, “
The Impact of a Tip Leakage Jet on Flow Separation in Axial Gas Turbine Diffusers
,”
Proceedings of 9th European Turbomachinery Conference.
,
Istanbul, Turkey
,
Mar. 21–25
.
12.
Thomas
,
R.
,
Schatz
,
M.
,
Kuschel
,
B.
,
Brouwer
,
S.
,
Pradeep
,
A. M.
,
Vogt
,
D. M.
, and
Roy
,
B.
,
2015
, “
Influence of Tip Jet Mass Flow and Blowing Rate on the Performance of an Axial Diffuser at Different Inlet Total Pressure Profiles
,”
Proceedings of ASME Turbo Expo 2015
,
No. GT2015-43427
.
13.
Mihailowitsch
,
M.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2019
, “
Numerical Investigations of an Axial Exhaust Diffuser Coupling the Last Stage of a Generic Gas Turbine
,”
ASME J. Turbomach.
,
141
, p.
031025
.
14.
Willinger
,
R.
, and
Haselbacher
,
H.
,
1998
, “
The Role of Rotor Tip Clearance on the Aerodynamic Interaction of a Last Gas Turbine Stage and an Exhaust Diffuser
,”
ASME Paper 98-GT-94
.
15.
Hirschmann
,
A.
,
Volkmer
,
S.
,
Casey
,
M.
, and
Montgomery
,
M.
,
2012
, “
Hub Extension in an Axial Gas Turbine Diffuser
,”
Proceedings of ASME Turbo Expo 2012
,
No. GT2012-68832
.
16.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
120
, pp.
120
129
.
17.
ANSYS
,
2018
,
ANSYS CFX-Solver Theory Guide, Release 18.2.
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
19.
Brouwer
,
S.
,
2017
, “
Research on the Accuracy of Flow Simulation in Gas Turbine Exhaust Diffusers
,”
Ph.D. thesis
,
University of Stuttgart
,
Stuttgart
.
20.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
, p.
078001
.
You do not currently have access to this content.