Abstract

This paper describes a coupled experimental and computational fluid dynamics (CFD) campaign conducted on a 1.5 intermediate turbine stage in the full range of operating conditions, from start-up to design point under variable expansion ratio and physical speed. The test maintains engine similitude conditions and allows direct comparison with CFD data to assess the predictions accuracy. The choice of variables to describe the speedlines is also addressed by using both measured and predicted data. A discussion on velocity ratio versus corrected speed illustrates the advantages of the former parameter the adoption of which produces constant shape curves in a very wide range of operating conditions. The comparison between measurements and predictions suggests that CFD, in conjunction with performance correlations, is a viable tool to predict speedlines in a fairly wide range of conditions, provided that geometrical and operational details are carefully matched.

References

1.
Almasi
,
A.
,
2012
, “
Gas Turbine Selection: Heavy Frame or Aeroderivative
,” Turbomachinery International, https://www.turbomachinerymag.com/view/gas-turbine-selection-heavy-frame-or-aeroderivative
2.
Vyncke-Wilson
,
D.
,
2013
, “
Advantages of Aeroderivative Gas Turbines: Technical & Operational Considerations on Equipment Selection
,”
Symposium of the Industrial Application of Gas Turbines Committee
,
Banff, AB, Canada
,
Sept. 30–Oct. 3
.
3.
Scotti Del Greco
,
A.
,
Michelassi
,
V.
,
Francini
,
S.
,
Di Benedetto
,
D.
, and
Manoharan
,
M.
,
2019
, “
Aeroderivative Mechanical Drive Gas Turbines: The Design of Intermediate Pressure Turbines
,”
ASME J. Turbomach.
,
141
(
8
), p.
081007
.
4.
Doom
,
T. R.
,
2013
, “
Case Studies of the Government's Role in Energy Technology Innovation
,” American Energy Innovation Council, http://americanenergyinnovation.org/wp-content/uploads/2013/08/Case-Gas-Turbines.pdf
5.
Yoon
,
S.
,
Denton
,
J.
,
Curtis
,
E.
,
Longley
,
J.
, and
Pullam
,
G.
,
2014
, “
Improving Intermediate Pressure Turbine Performance by Using a Nonorthogonal Stator
,”
ASME J. Turbomach.
,
136
(
2
), p.
021012
.
6.
Cranstone
,
A. W.
,
Pullan
,
G.
,
Curtis
,
E. M.
, and
Bather
,
S.
,
2014
, “
Aerodynamic Design of High Endwall Angle Turbine Stages—Part 1: Methodology Development
,”
ASME J. Turbomach.
,
136
(
2
), p.
021006
.
7.
Cranstone
,
A. W.
,
Pullan
,
G.
,
Curtis
,
E. M.
, and
Bather
,
S.
,
2014
, “
Aerodynamic Design of High Endwall Angle Turbine Stages—Part 2: Experimental Verification
,”
ASME J. Turbomach.
,
136
(
2
), p.
021007
.
8.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2013
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME J. Turbomach.
,
135
(
6
), p.
061007
.
9.
Schobeiri
,
M. T.
, and
Abdelfattah
,
S.
,
2013
, “
On the Reliability of RANS and URANS Numerical Results for High-Pressure Turbine Simulations: A Benchmark Experimental and Numerical Study
,”
ASME J. Turbomach.
,
135
(
6
), p.
061012
.
10.
Dixon
,
S. L.
,
1998
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 4th ed.,
Butterworth-Heinemann
,
Woburn, MA
.
11.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1995
, “
Integration of Navier-Stokes Equations Using Dual Time Stepping and a Multigrid Method
,”
AIAA J.
,
33
(
6
), pp.
985
990
.
12.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
13.
Stollenwerk
,
S.
, and
Kuegeler
,
E.
,
2013
, “
Deterministic Stress Modeling for Multistage Compressor Flowfields
,”
Proceedings of the ASME Turbo Expo: Power for Land, Sea and Air
,
San Antonio, TX
,
June 3–7
.
14.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Comparison of the AUSM+-up and Other Advection Schemes for Turbomachinery Applications
,”
Shock Waves
,
29
(
5
), pp.
705
716
.
15.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2019
, “
Large Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure-Turbine Cascade—Part II: Loss Generation
,”
ASME J. Turbomach.
,
141
(
5
), p.
051004
.
16.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Large Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure Turbine Cascade, Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Conditions
,”
ASME J. Turbomach.
,
141
(
2
), p.
121005
.
17.
Pacciani
,
R.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Lutum
,
E.
,
2012
, “
Calculation of Steady and Periodic Unsteady Blade Surface Heat Transfer in Separated Transitional Flow
,”
ASME J. Turbomach.
,
134
(
6
), p.
061037
.
18.
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Cecchi
,
S.
, and
Daccà
,
S.
,
2007
, “
Some Aspects of CFD Modeling in the Analysis of a Low-Pressure Steam Turbine
,”
ASME Paper GT2007-27235
,
Montreal, Canada
.
19.
Stodola
,
A.
,
1922
,
Dampf -und Gasturbinen
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.