Abstract

The imperative improvement in the efficiency of turbofan engines is commonly facilitated by increasing the turbine inlet temperature (TIT). This development has reached a point where also components downstream of the high-pressure turbine (HPT) have to be adequately cooled. Such a component is the turbine center frame (TCF), known for a complex aerodynamic flow highly influenced by purge-mainstream interactions. The purge air, being injected through the wheelspace cavities of the upstream high-pressure turbine, bears a significant cooling potential for the TCF. Despite this, fundamental knowledge of the influencing parameters on heat transfer and film cooling in the TCF is still missing. This paper examines the influence of purge-to-mainstream blowing ratio, density ratio (DR), and purge swirl angle on heat transfer and film cooling in the TCF. The experiments are conducted in a sector-cascade test rig specifically designed for such heat transfer studies using infrared thermography and tailor-made flexible heating foils with constant heat flux. Three purge-to-mainstream blowing ratios and an additional no purge case are investigated. The purge flow is injected without swirl and also with engine-similar swirl angles. The purge swirl and blowing ratio significantly impact the magnitude and the spread of film cooling in the TCF. Increasing blowing ratios lead to an intensification of heat transfer. By cooling the purge flow, a moderate variation in purge-to-mainstream density ratio is investigated, and the influence is found to be negligible.

References

1.
European Environment Agency, European Union Aviation Safety Agency and EUROCONTROL
,
2019
, “
European Aviation Environmental Report 2019
.”
2.
Langston
,
L. S.
,
Nice
,
M. S.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
(
1
), pp.
21
28
.
3.
Hylton
,
L. D.
,
Mihelc
,
M. B.
,
Turner
,
E. R.
,
Nealey
,
D. A.
, and
York
,
A.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,”
NASA CR 168015
.
4.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
(
2
), pp.
257
267
.
5.
Thole
,
K. A.
, and
Knost
,
D. G.
,
2005
, “
Heat Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5255
5269
.
6.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2008
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
(
1
), p.
011014
.
7.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2013
, “
Purge Flow and Interface Gap Geometry Influence on the Aero-Thermal Performance of a Rotor Blade Cascade
,”
Int. J. Heat Fluid Flow
,
44
, pp.
563
575
.
8.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part I-Flow Field Measurements
,”
Proceedings of ASME Turboexpo
, 2000-GT-199.
9.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
720
729
.
10.
Hummel
,
T.
,
Kneer
,
J.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2015
, “
Experimentelle Untersuchung des Wärmeübergangs und der Filmkühleffektivität Einer Dreidimensionalen Konturierten Turbinen-Seitenwand
,”
Deutscher Luft und Raumfahrtkongress
,
2015
, pp.
1
12
. 101:1-201601293626
11.
Lazzi
,
G,S
,
Schädler
,
R.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2016
, “
Infrared Thermography With Non-Uniform Heat Flux Boundary Conditions on the Rotor Endwall of an Axial Turbine
,”
Meas. Sci. Technol.
,
28
(
2
).
12.
Metzger
,
D. E.
,
Carper
,
H. J.
, and
Swank
,
L. R.
,
1968
, “
Heat Transfer With Film Cooling Neat Nontangential Slots
,”
ASME J. Eng. Power
,
90
(
2
), pp.
157
162
.
13.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
249
270
.
14.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
) pp.
442
449
.
15.
Rutledge
,
J. L.
,
Polanka
,
M. D.
, and
Greiner
,
N. J.
,
2017
, “
Computational Fluid Dynamics Evaluations of Film Cooling Flow Scaling Between Engine and Experimental Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021004
.
16.
Zerobin
,
S.
,
Aldrian
,
C.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Impact of Individual High-Pressure Turbine Rotor Purge Flows on Turbine Center Frame Aerodynamics
,” ASME Paper GT2017-63616.
17.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.
18.
Arroyo Osso
,
C.
,
Johansson
,
T. G.
, and
Wallin
,
F.
,
2010
, “
Heat Transfer Investigation of an Aggressive Intermediate Turbine Duct: Part 1—Experimental Investigation
,” ASME Paper GT2010-23653.
19.
Jagerhofer
,
P. R.
,
Patinios
,
M.
,
Erlacher
,
G.
,
Glasenapp
,
T.
,
Göttlich
,
E.
, and
Farisco
,
F.
,
2020
, “
A Sector-Cascade Test Rig for Measurements of Heat Transfer in Turbine Center Frames
,” ASME Paper GT2020-14469.
20.
Steiner
,
M.
,
2018
, “
Einfluss der Zuströmung auf den Turbinenübergangkanal
,”
Ph.D. thesis
,
Graz University of Technology
.
21.
Lohrengel
,
J.
, and
Todtenhaupt
,
R.
,
1996
, “
Thermal Conductivity, Degree of Total Emissivity and Spectral Emissivity of the Nextel Velvet Coating
,”
PTB-Mitteilungen
,
106
(
4
), pp.
259
265
.
22.
Behre
,
S. K.
,
2020
, “
Unsteady Analysis of Turbulent Quantities in an Axial Flow Turbine
,”
dissertation
,
RWTH Aachen University
. HT020467615
23.
Hartley
,
R.
, and
Zisserman
,
A.
,
2004
,
Multiple View Geometry in Computer Vision
,
Cambridge University Press
,
Cambridge
.
24.
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,” JCGM 100:2008, in GUM series of JCGM. Accessed February 2020.
25.
Speidel
,
L.
,
1962
, “
Determination of the Necessary Surface Quality and Possible Losses Due to Roughness in Steam Turbines
,”
Elektrizitätswirtschaft
,
61
, pp.
799
804
.
26.
Revel
,
N.
,
1998
, “
Internal Report on BG Technology
,” PR091.
27.
Schlichting
,
H.
,
Gersten
,
K.
,
Krause
,
E.
, and
Oertel
,
H.
,
2017
,
Boundary-Layer Theory
,
Springer
,
New York
.
28.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals & Applications
,
McGraw-Hill
,
New York
.
29.
Turner
,
A. B.
,
Tarada
,
F. H. R.
, and
Bayley
,
F. J.
,
1985
, “
Effects of Surface Roughness on Heat Transfer to Gas Turbine Blades
,”
AGARD Proc.
,
390
, p.
9
.
30.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
146
155
.
You do not currently have access to this content.