Abstract

Ceramic matrix composites (CMCs), especially SiC/SiC, have garnered significant attention owing to their remarkable mechanical properties at higher temperatures. For the protection of the substrate from oxidation, the SiC/SiC CMCs inherently require environmental barrier coating (EBC). Because aeroengines must function under a wide range of conditions and environments, the coated CMC must be sufficiently resistant to various damage modes. Among these, the effect of microparticles is one of the limiting factors for the durability and performance of components, particularly when the engine is operated in dusty areas. The main goal of this experimental research is to investigate and determine the surface damage behavior of the coated CMC caused by micro-sand particles. The data were surveyed across a fairly broad range of exposed temperatures and velocities, and covered conditions relevant to advanced hot section designs. In the experiments, silica or alumina sand entrained in the gas stream was jet-blasted from the nozzle and then impinged on the target CMC + EBC coupon. Owing to the broad testing range, the damage mode and extent of damage varied considerably by condition. The obtained data were then reorganized and compared with several previously proposed particle impact models. This is to first understand and obtain a complete picture of all the probable consequences in the expected design and off-design conditions and, second, to determine the validity of, and deviations from the conventional modeling with the present CMC + EBC material, which will be useful in the next component design phase.

References

1.
Hurst
,
J.
,
2018
, “
NASA Transformational Tools and Technologies Project: 2700 °F CMC/EBC Technology Challenge
,”
Proceedings of ASME Turbo Expo 2018
,
Oslo, Norway
, ASME Paper No. GT2018-77282.
2.
Nakamura
,
T.
,
Kotani
,
M.
, and
Hirano
,
H.
,
2019
, “
Development and Evaluation for CMC With EBC
,”
Proceedings of the 13th Pacific Rim Conference of Ceramic Societies
,
Okinawa, Japan
,
Oct. 27–Nov. 1, No. 29-B1B-S33-17
.
3.
Hamed
,
A.
,
Tabakoff
,
W.
,
Rivir
,
R.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
4.
Hamed
,
A.
,
Tabakoff
,
W.
,
Swar
,
R.
,
Shin
,
D.
, and
Woggon
,
N.
,
2013
, “
Combined Experimental and Numerical Simulations of Thermal Barrier Coated Turbine Blades Erosion
,” NASA Technical Report NASA/TM-2013-217857.
5.
Ghenaiet
,
A.
,
2012
, “
Effects of Solid Particle Ingestion Through and HP Turbine
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
, ASME Paper No. GT2012-69875.
6.
Nagy
,
D.
, and
Bergstaller
,
G.
,
2005
, “
LPM Composite Overlay for Erosion Protection of Turbine Nozzles
,”
Proceedings of ASME Turbo Expo 2005
,
Reno-Tahoe, NV
, ASME Paper No. GT2005-69019.
7.
Erazo
,
F.
,
Robertson
,
T.
,
Huang
,
X.
,
Kearsey
,
R.
, and
Yang
,
Q.
,
2017
, “
Erosion Properties of Ceramic Composite Material Based on Nano-Mullite Whisker and Zirconia-Toughened Alumina
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
, ASME Paper No. GT2017-63736.
8.
Kedir
,
N.
,
Gong
,
C.
,
Sanchez
,
L.
,
Presby
,
M. J.
,
Kane
,
S.
,
Faucett
,
D. C.
, and
Choi
,
S. R.
,
2019
, “
Erosion in Gas-Turbine Grade Ceramic Matrix Composites
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011019
.
9.
Presby
,
M. J.
,
Gong
,
C.
,
Kane
,
S.
,
Kedir
,
N.
,
Stanley
,
A.
,
Faucett
,
D. C.
, and
Choi
,
S. R.
,
2020
, “
Erosion in a Melt-Infiltrated SiC/SiC Ceramic Matrix Composite
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041009
.
10.
Meier
,
S. M.
, and
Gupta
,
D. K.
,
1994
, “
The Evolution of Thermal Barrier Coatings in Gas Turbines Engine Applications
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
250
257
.
11.
Okita
,
Y.
,
Mizokami
,
Y.
, and
Hasegawa
,
J.
,
2019
, “
Experimental and Numerical Investigation of Environmental Barrier Coated CMC Turbine Airfoil Erosion
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031013
.
12.
Okita
,
Y.
,
Mizokami
,
Y.
, and
Hasegawa
,
J.
,
2020
, “
Erosion Testing of Environmental-Barrier-Coated CMC and Its Behavior on an Aero-Engine Turbine Vane Under Particle-Laden Hot Gas Stream
,”
ASME J. Turbomach.
,
142
(
6
), p.
061001
.
13.
Lawson
,
S. A.
,
Thole
,
K. A.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Simulations of Multiphase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051041
.
14.
Ghoshal
,
A.
,
Walock
,
M. J.
,
Murugan
,
M.
,
Mock
,
C.
,
Bravo
,
L.
,
Pepi
,
M.
,
Nieto
,
A.
, et al
,
2019
, “
Governing Parameters Influencing CMAS Adhesion and Infiltration Into Environmental/Thermal Barrier Coatings in Gas Turbine Engines
,” ASME paper GT2019-92000.
15.
Ghoshal
,
A.
,
Murugan
,
M.
,
Walock
,
M. J.
,
Nieto
,
A.
,
Barnett
,
B. D.
,
Pepi
,
M. S.
,
Swab
,
J. J.
, et al
,
2018
, “
Molten Particulate Impact on Tailored Thermal Barrier Coatings for Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022601
.
16.
Borom
,
M. P.
,
Johnson
,
C. A.
, and
Peluso
,
L. A.
,
1996
, “
Role of Environmental Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
86–87
(Part 1), pp.
116
126
.
17.
Schmidt
,
T.
,
Gartner
,
F.
,
Assadi
,
H.
, and
Kreye
,
H.
,
2006
, “
Development of a Generalized Parameter Window for Cold Spray Deposition
,”
Acta Mater.
,
54
(
3
), pp.
729
742
.
18.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propulsion and Power
,
22
(
2
), pp.
350
360
.
19.
Lundgreen
,
R.
,
Sacco
,
C.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2016
, “
Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig
,” ASME Paper GT2016-57560.
20.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
Pinelli
,
M.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2019
, “
Gas Turbine Fouling Tests: Review, Critical Analysis, and Particle Impact Behavior Map
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032601
.
21.
Boulanger
,
A.
,
Patel
,
H.
,
Hutchinson
,
J.
,
DeShong
,
W.
,
Xu
,
W.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2016
, “
Preliminary Experimental Investigation of Initial Onset of Sand Deposition in the Turbine Section of Gas Turbines
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, South Korea
, ASME Paper No. GT2016-56059.
22.
Laycock
,
R.
, and
Fletcher
,
T. H.
,
2016
, “
Independent Effects of Surface and Gas Temperature on Coal Fly Ash Deposition in Gas Turbines at Temperatures up to 1400C
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021402
.
23.
Miller
,
R. A.
,
Kuczmarski
,
M.
, and
Zhu
,
D.
,
2011
, “
Burner Rig With an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings
,” NASA Technical Report. NASA/TM-2011-217008.
24.
Kirschner
,
M.
,
Wobst
,
T.
,
Rittmeister
,
B.
, and
Mundt
,
C.
,
2014
, “
Erosion Testing of Thermal Barrier Coatings in a High Enthalpy Wind Tunnel
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032101
.
25.
Shin
,
D.
, and
Hamed
,
A.
,
2016
, “
Advanced High Temperature Erosion Tunnel for Testing TBC and New Turbine Blade Materials
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, South Korea
, ASME Paper No. GT2016-57922.
26.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated with Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
27.
ASTM
,
2007
, “
Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets
,”
ASTM International
,
West Conshohocken, PA
, Standard No. G76-07.
28.
Suzuki
,
M.
, and
Yamane
,
T.
,
2018
, “
Development of High-Temperature High-Velocity Sand Erosion Apparatus
,”
Proceedings of ASME Turbo Expo 2018
,
Oslo, Norway
, ASME Paper No. GT2018-75044.
29.
MIL-E-5007D
,
1973
, “
Engine, Aircraft, Turbojet and Turbofan, General Specification for
”.
30.
JSSG-2007A
,
2004
,
Department of Defense Joint Service Specification Guide: Engines, Aircraft, Turbine
”.
31.
Nicholls
,
J. R.
,
1997
, “
Laboratory Studies of Erosion-Corrosion Processes Under Oxidising and Oxidising/Sulphidising Conditions
,”
Mater. High Temp.
,
14
(
3
), pp.
289
306
.
32.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
33.
Oka
,
Y.
,
Nishimura
,
M.
,
Nagahashi
,
K.
, and
Matsumura
,
M.
,
2001
, “
Control and Evaluation of Particle Impact Conditions in a Sand Erosion Test Facility
,”
Wear
,
250
(
1–12
), pp.
736
743
.
34.
Crowe
,
E. D.
, and
Bons
,
J. P.
,
2019
, “
Effects of Dust Composition on Particle Deposition in an Effusion Cooling Geometry
,”
Proceedings of ASMETurbo Expo 2019
,
Phoenix, NV
, ASME Paper No. GT2019-91032.
35.
New Energy and Industrial Technology Development Organization (NEDO)
,
2020
, NEDO Report Database No. 20210000000222.
36.
Walsh
,
P. M.
,
Sayre
,
A. N.
,
Loehden
,
D. O.
,
Monroe
,
L. S.
,
Beer
,
J. M.
, and
Sarofim
,
A. F.
,
1990
, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
,
16
(
4
), pp.
327
346
.
37.
Mills
,
K. C.
, and
Sridhar
,
S.
,
1999
, “
Viscosities of Ironmaking and Steelmaking Slags
,”
Ironmaking Steelmaking
,
26
(
4
), pp.
262
268
.
38.
Duffy
,
J. A.
, and
Ingram
,
M. D.
,
1975
, “
Optical Basicity IV: Influence of Electronegativity on the Lewis Basicity and Solvent Properties of Molten Oxyanion Salts and Glasses
,”
J. Inorg. Nucl. Chem.
,
37
(
5
), pp.
1203
1206
.
39.
Zhang
,
G.-H.
, and
Chou
,
K.-C.
,
2010
, “
Simple Method for Estimating the Electrical Conductivity of Oxide Melts With Optical Basicity
,”
Metall. Mater. Trans. B
,
41
(
1
), pp.
131
136
.
40.
Yin
,
C.
,
Luo
,
Z.
,
Ni
,
M.
, and
Cen
,
K.
,
1998
, “
Predicting Coal Ash Fusion Temperature with a Back-Propagation Neural Network Model
,”
Fuel
,
77
(
15
), pp.
1777
1782
.
41.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres,” J
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
42.
El-Batsh
,
H.
,
2001
, “
Modeling Particle Deposition on Compressor and Turbine Blade Surfaces
,”
PhD thesis
,
Vienna University of Technology
,
Vienna
.
43.
Bons
,
J. P.
,
2002
, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
Proceedings of ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
, ASME Paper No. GT2002-30198.
44.
Wenglarz
,
R. A.
, and
Fox
R. G.
, Jr.
1990
, “
Physical Aspects of Deposition From Coal-Water Fuels Under Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
9
14
.
45.
Wall
,
S.
,
John
,
W.
,
Wang
,
H.-C.
, and
Goren
,
S. L.
,
1990
, “
Measurements of Kinetic Energy Loss for Particles Impacting Surfaces
,”
Aerosol Sci. Technol.
,
12
(
4
), pp.
926
946
.
46.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2005
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
(
3
), pp.
462
470
.
47.
Walmsley
,
T. G.
,
Walmsley
,
M. R. W.
,
Zhao
,
S.
,
Neale
,
J. R.
, and
Atkins
,
M. J.
,
2010
, “
Effect of Angle on Particle Deposition in an Impingement Jet
,”
Proceedings of 17th Australian Fluid Mechanics Conference
,
Auckland, New Zealand
,
Dec. 5–9
.
48.
Barker
,
B.
,
Hsu
,
K.
,
Varney
,
B.
,
Boulanger
,
A.
,
Hutchinson
,
J.
, and
Ng
,
W. F.
, “
An Experiment-Based Sticking Model for Heated Sand
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
, ASME Paper No. GT2017-64421.
49.
Phelps
,
A. W.
, and
Pfledderer
,
L. M.
,
2014
, “
Development of a Naturalistic Test Media for Dust Ingestion CMAS Testing of Gas Turbine Engines
,”
Thermal Barrier Coatings 4, ECI Symposium Series
. https://dc.engconfintl.org/thermal_barrier_iv/29
You do not currently have access to this content.