Abstract

This paper presents the numerical optimization of a tip appendage design for the passive control of tip leakage vortices in subsonic axial flow cooling fans. The studied class of fan was designed in the conventional manner without the consideration of tip clearance effects. As such, the objective of this investigation is the improvement of the aerodynamic performance characteristics of the datum fan through consideration of the blade tip geometry. Based on previous studies involving fan performance enhancement using various tip end-plate configurations, the most promising end-plate geometry which is found to best improve the fan’s performance characteristics is selected for further development through optimization. Before the optimization process can begin, initialization of the chosen end-plate’s design space using the design of experiments (DoEs) technique is performed. Formulation of the response surface is based on a multi-objective multi-point objective function which considers the fan’s various performance metrics. Considering the optimization process, the design and analysis of computer aided experiments method is used in the development of the Kriging-based surrogate model’s database. The resulting database is coupled with an efficient global optimization algorithm which completes the workflow of the optimization routine. The Pareto-front of non-dominated solutions is used to guide the optimal design selection, on which the experimental evaluations are based. The experimental results of the optimized design indicate improved fan performance characteristics at greater than peak efficiency flowrates. This design is found to increase the datum fan’s design point performance characteristics by a value of 32.90% in total-to-static pressure rise and a 7.66 percentage point increase in total-to-static efficiency at the fan’s design speed of 722 rpm.

References

1.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Publishing
,
Harlow, Essex, UK
.
2.
Mitchell
,
A. M.
, and
Delery
,
J.
,
2001
, “
Research Into Vortex Breakdown Control
,”
Prog. Aerosp. Sci.
,
37
(
4
), pp.
385
418
.
3.
Vad
,
J.
,
2008
, “
Aerodynamic Effects of Blade Sweep and Skew in Low-Speed Axial Flow Rotors at the Design Flow Rate: An Overview
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
222
(
1
), pp.
69
85
.
4.
Jiang
,
D.
,
Luo
,
H.
, and
Zhang
,
X.
,
2015
, “
Numerical Study of the Leakage Flow on a Novel Turbine Blade Tip
,”
Procedia Eng.
,
99
, pp.
413
422
.
5.
Ye
,
X.
,
Li
,
P.
,
Li
,
C.
, and
Ding
,
X.
,
2015
, “
Numerical Investigation of Blade Tip Grooving Effect on Performance and Dynamics of an Axial Flow Fan
,”
Energy
,
82
(
C
), pp.
556
569
.
6.
Ye
,
X.
,
Zhang
,
J.
, and
Li
,
C.
,
2017
, “
Effect of Blade Tip Pattern on Performance of a Twin-Stage Variable-Pitch Axial Fan
,”
Energy
,
126
, pp.
535
563
.
7.
Zhang
,
L.
,
Jin
,
Y.
, and
Jin
,
Y.
,
2014
, “
Effect of Tip Flange on Tip Leakage Flow of Small Axial Flow Fans
,”
J. Therm. Sci.
,
23
(
1
), pp.
45
52
.
8.
Corsini
,
A.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2006
, “
Development of Improved Blade Tip End-Plate Concepts for Low-Noise Operation in Industrial Fans
,”
Conference on Modelling Fluid Flow (CMFF’06), The 13th International Conference on Fluid Flow Technologies
,
Budapest, Hungary
,
Sept. 6–9
.
9.
Corsini
,
A.
, and
Sheard
,
A. G.
,
2007
, “
Tip End-Plate Concept Based on Leakage Vortex Rotation Number Control
,”
J. Comput. Appl. Mech.
,
8
(
1
), pp.
21
37
.
10.
Corsini
,
A.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2007
, “
Development of Improved Blade Tip End-Plate Concepts for Low-Noise Operation in Industrial Fans
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
221
(
5
), pp.
669
681
.
11.
Corsini
,
A.
,
Rispoli
,
F.
, and
Sheard
,
A.
,
2010
, “
Shaping of Tip End-Plate to Control Leakage Vortex Swirl in Axial Flow Fans
,”
J. Turbomach.
,
132
(
3
), p.
031005
.
12.
Corsini
,
A.
, and
Sheard
,
A. G.
,
2013
, “
End-Plate for Noise-By-Flow Control in Axial Fans
,”
Periodica Polytechnica Mech. Eng.
,
57
(
2
), pp.
3
16
.
13.
Meyer
,
T. O.
,
van der Spuy
,
S. J.
,
Meyer
,
C. J.
, and
Corsini
,
A.
,
2021
, “
Design of a Tip Appendage for the Control of Tip Leakage Vortices in Axial Flow Fans
,”
ASME J. Turbomach.
,
143
(
7
), p.
071008
.
14.
Wilkinson
,
M. B.
,
van der Spuy
,
S. J.
, and
von Backström
,
T. W.
,
2019
, “
Performance Testing of an Axial Flow Fan Designed for Air-Cooled Heat Exchanger Applications
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p. 051007.
15.
Tiralap
,
A.
,
Tan
,
C. S.
,
Donahoo
,
E.
,
Montgomery
,
M.
, and
Cornelius
,
C.
,
2017
, “
Effects of Rotor Tip Blade Loading Variation on Compressor Stage Performance
,”
ASME J. Turbomach.
,
139
(
5
), p.
051006
.
16.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
. DOI 10.1214/ss/1177012413
17.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
18.
Forrester
,
A. I.
,
Bressloff
,
N. W.
, and
Keane
,
A. J.
,
2006
, “
Optimization Using Surrogate Models and Partially Converged Computational Fluid Dynamics Simulations
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
462
(
2071
), pp.
2177
2204
.
19.
Inoue
,
M.
, and
Furukawa
,
M.
,
2002
, “
Physics of Tip Clearance Flow in Turbomachinery
,”
ASME 2002 Joint US-European Fluids Engineering Division Conference, Vol. 2 of Fluids Engineering Division Summer Meeting
,
Montreal, Quebec, Canada
,
July 14–18
, pp.
777
789
.
20.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Heat Mass Transfer
,
4
.
21.
Louw
,
F. G.
,
2015
, “
Investigation of the Flow Field in the Vicinity of an Axial Flow Fan During Low Flow Rates
,” PhD thesis,
Stellenbosch University
,
Stellenbosch, WC
.
22.
OpenCFD Ltd, 2018, “OpenFOAM User Guide.” https://www.openfoam.com/documentation/user-guide/index.php, Accessed June 12, 2018.
23.
Amandolese
,
X.
,
Michelin
,
S.
, and
Choquel
,
M.
,
2013
, “
Low Speed Flutter and Limit Cycle Oscillations of a Two-Degree-of-Freedom Flat Plate in a Wind Tunnel
,”
J. Fluids Struct.
,
43
, pp.
244
255
.
24.
Venter
,
S.
, and
Kröger
,
D.
,
1992
, “
The Effect of Tip Clearance on the Performance of an Axial Flow Fan
,”
Energy Convers. Manage.
,
33
(
2
), pp.
89
97
.
25.
Deutsch
,
J. L.
, and
Deutsch
,
C. V.
,
2012
, “
Latin Hypercube Sampling With Multidimensional Uniformity
,”
J. Stat. Plan. Inference
,
142
(
3
), pp.
763
772
.
26.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
Aspects of the Matlab Toolbox DACE
, Citeseer.
27.
Durantin
,
C.
,
Marzat
,
J.
, and
Balesdent
,
M.
,
2016
, “
Analysis of Multi-Objective Kriging-Based Methods for Constrained Global Optimization
,”
Comput. Optim. Appl.
,
63
(
3
), pp.
903
926
.
28.
Everitt
,
B.
,
2012
,
Introduction to Optimization Methods and Their Application in Statistics
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
29.
Price
,
K.
,
Storn
,
R. M.
, and
Lampinen
,
J. A.
,
2005
,
Differential Evolution: A Practical Approach to Global Optimization
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
30.
Haupt
,
R. L.
, and
Ellen Haupt
,
S.
,
2004
,
Practical Genetic Algorithms
,
Wiley Online Library
.
31.
Bergh
,
J.
,
2018
, “
On the Evaluation of Common Design Metrics for the Optimization of Non-Axisymmetric Endwall Contours for a 1-Stage Turbine Rotor
,” PhD thesis,
University of Cape Town
,
Cape Town
.
32.
Sasena
,
M. J.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
,
2002
, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optim.
,
34
(
3
), pp.
263
278
.
You do not currently have access to this content.