Abstract

Cooling design of highly loaded turbine blade tips is challenged by the scarcity of experimental data and the lack of physical understanding in cooling and overtip leakage (OTL) interaction under transonic conditions. To address these issues, this paper carried out transient thermal measurements through infrared thermography on a transonic flat tip with and without cooling injection. Experimental data of Nusselt number and cooling effectiveness were obtained and compared with computational fluid dynamics (CFD) results for numerical validation. Both experimental data and simulation results show that cooling injection drastically augments tip Nusselt number near pressure side (PS) which is upstream of ejection, and in areas around coolant holes. Moreover, a strikingly low Nusselt number stripe is observed downstream of cooling injection from one of the holes in aft portion of blade. The strip is directed transverse to local OTL streamline flowing from pressure to suction side (SS) and sprawls to adjacent coolant wakes. Further numerical analyses concluded that cooling injection changes tip aerodynamics and overtip shock wave structure fundamentally. Oblique shock waves across the uncooled flat tip are replaced by a confined shock train downstream of cooling injection and between cooling holes, which is constituted by two shocks normal to local OTL flow coming from pressure side. Across the first shock, density and pressure increases abruptly, contributing to thickening of tip boundary layer and the plummet of skin friction on tip surface, which is responsible for the sharp decline of tip Nusselt number and therefore, formation of low heat transfer stripe downstream cooling injection.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
3.
Azad
,
G. S.
,
Han
,
J. C.
,
Teng
,
S. Y.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.
4.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2006
, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade
,”
ASME J. Turbomach.
,
128
(
2
), pp.
300
309
.
5.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
.
6.
Bunker
,
R. S.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. NY Acad. Sci.
,
934
(
1
), pp.
64
79
.
7.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
8.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
3
), pp.
494
502
.
9.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
5
), pp.
521
530
.
10.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part 3: Tip Cooling
,”
ASME J. Turbomach.
,
131
(
1
), p.
011008
.
11.
Green
,
B. R.
,
Barter
,
J. W.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2005
, “
Averaged and Time-Dependent Aerodynamics of a High Pressure Turbine Blade Tip Cavity and Stationary Shroud: Comparison of Computational and Experimental Results
,”
ASME J. Turbomach.
,
127
(
4
), pp.
736
746
.
12.
Didier
,
F.
,
Dénos
,
R.
, and
Arts
,
T.
,
2002
, “
Unsteady Rotor Heat Transfer in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
124
(
4
), pp.
614
622
.
13.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.
,
138
(
10
), p.
101007
.
14.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
15.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
16.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
17.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.
18.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
19.
Saul
,
A. J.
,
Ireland
,
P. T.
,
Coull
,
J. D.
,
Wong
,
T. H.
,
Li
,
H.
, and
Romero
,
E.
,
2019
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on a Transonic Squealer Tip
,”
ASME J. Turbomach.
,
141
(
9
), p.
091005
.
20.
Vieira
,
J.
,
Coull
,
J.
,
Ireland
,
P.
, and
Romero
,
E.
,
2020
, “
Aerothermal Effect of Cavity Welding Beads on a Transonic Squealer Tip
,”
ASME Turbo Expo
,
Virtual, Online
,
Sept. 21–25
.
21.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2013
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
22.
Lee
,
S. W.
,
Jeong
,
J. S.
, and
Hong
,
I. H.
,
2019
, “
Chord-Wise Repeated Thermal Load Change on Flat Tip of a Turbine Blade
,”
Int. J. Heat Mass Transfer
,
138
, pp.
1154
1165
.
23.
Zhou
,
C.
, and
Hodson
,
H. P.
,
2011
, “
The Tip Leakage Flow of an Unshrouded High Pressure Turbine Blade With Tip Cooling
,”
ASME J. Turbomach.
,
133
(
4
), p.
041028
.
24.
Volino
,
R. J.
,
2017
, “
Control of Tip Leakage in a High-Pressure Turbine Cascade Using Tip Blowing
,”
ASME J. Turbomach.
,
139
(
6
), p.
061008
.
25.
Wheeler
,
A. P. S.
, and
Saleh
,
Z.
,
2013
, “
Effect of Cooling Injection on Transonic Tip Flows
,”
J. Propul. Power
,
29
(
6
), pp.
1374
1381
.
26.
Wang
,
Z.
,
Zhang
,
Q.
,
Liu
,
Y.
, and
He
,
L.
,
2015
, “
Impact of Cooling Injection on the Transonic Over-Tip Leakage Flow and Squealer Aerothermal Design Optimization
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062603
.
27.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.
28.
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Booth
,
G. D.
,
Lock
,
G. D.
, and
Dawes
,
W. N.
,
2010
, “
Aerothermal Investigation of Tip Leakage Flow in a Film Cooled Industrial Turbine Rotor
,”
ASME J. Turbomach.
,
132
(
2
), p.
021016
.
29.
Naik
,
S.
,
Georgakis
,
C.
,
Hofer
,
T.
, and
Lengani
,
D.
,
2012
, “
Heat Transfer and Film Cooling of Blade Tips and Endwalls
,”
ASME J. Turbomach.
,
134
(
4
), p.
041004
.
30.
Gao
,
J.
,
Zheng
,
Q.
,
Zhang
,
Z. Y.
, and
Jiang
,
Y. T.
,
2014
, “
Aero-Thermal Performance Improvements of Unshrouded Turbines Through Management of Tip Leakage and Injection Flows
,”
Energy
,
69
, pp.
648
660
.
31.
Wang
,
Y.
,
Song
,
Y.
,
Yu
,
J.
, and
Chen
,
F.
,
2018
, “
Effect of Cooling Injection on the Leakage Flow of a Turbine Cascade With Honeycomb Tip
,”
Appl. Therm. Eng.
,
133
, pp.
690
703
.
32.
Niu
,
M.
, and
Zang
,
S.
,
2011
, “
Experimental and Numerical Investigations of Tip Injection on Tip Clearance Flow in an Axial Turbine Cascade
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
1214
1222
.
33.
Xue
,
S.
,
Arisi
,
A.
, and
Ng
,
W.
,
2015
, “
Experimental and Numerical Investigations of Shock-Film Cooling Interaction on a Turbine Blade With Fan-Shaped Cooling Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
044502
.
34.
Shiau
,
C.-C.
,
Chowdhury
,
N. H.
,
Han
,
J.-C.
,
Mirzamoghadam
,
A. V.
, and
Riahi
,
A.
,
2018
, “
Transonic Turbine-Vane Film Cooling with Showerhead Effect Using Pressure-Sensitive Paint Measurement Technique
,”
J. Thermophys. Heat Transfer
,
32
(
3
), pp.
637
647
.
35.
Kodzwa
,
P. M.
, Jr.
, and
Eaton
,
J. K.
,
2010
, “
Film Effectiveness Measurements on the Pressure Surface of a Transonic Airfoil
,”
J. Propul. Power
,
26
(
4
), pp.
837
847
.
36.
Ligrani
,
P. M.
,
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Shock Wave–Film Cooling Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
123
(
4
), pp.
788
797
.
37.
Zheng
,
R.
,
Li
,
M.
,
Wang
,
Z.
, and
Zhang
,
Q.
, “
Control of Blow-Down Wind Tunnel Using Combined Extended and Nonlinear Predictive Filters
,”
Proc. ASME Paper Number GT2015-42908
,
American Society of Mechanical Engineers
, p.
V006T05A016
.
38.
Xi
,
J.
,
Zhang
,
Q.
,
Li
,
M.
, and
Wang
,
Z.
, “
Advanced Flow Control for Supersonic Blowdown Wind Tunnel Using Extended Kalman Filter
,”
Proc. ASME Paper Number GT2013-95281
,
American Society of Mechanical Engineers
, p.
V03CT14A025
.
39.
Ma
,
H.
,
Wang
,
Z.
,
Wang
,
L.
,
Zhang
,
Q.
,
Yang
,
Z.
, and
Bao
,
Y.
,
2016
, “
Ramp Heating in High-Speed Transient Thermal Measurement With Reduced Uncertainty
,”
J. Propul. Power
,
32
(
5
), pp.
1190
1198
.
40.
Lu
,
S.
,
Ma
,
H.
,
Zhang
,
Q.
, and
Teng
,
J.
,
2020
, “
Cutback Squealer Tip Trailing Edge Cooling Performance
,”
Int. J. Heat Mass Transfer
,
154
, p.
119632
.
41.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
42.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2012
,
Convective Heat and Mass Transfer
,
Tata McGraw-Hill Education
,
New York
.
43.
Mee
,
D.
,
Chiu
,
H.
, and
Ireland
,
P.
,
2002
, “
Techniques for Detailed Heat Transfer Measurements in Cold Supersonic Blowdown Tunnels Using Thermochromic Liquid Crystals
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3287
3297
.
44.
Arisi
,
A.
,
Xue
,
S.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2015
, “
Numerical Investigation of Aerothermal Characteristics of the Blade Tip and Near-Tip Regions of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
137
(
9
), p.
091002
.
45.
Zhou
,
C.
,
2015
, “
Thermal Performance of Transonic Cooled Tips in a Turbine Cascade
,”
J. Propul. Power
,
31
(
5
), pp.
1268
1280
.
46.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
John Wiley & Sons
,
New York
.
47.
Matsuo
,
K.
,
Miyazato
,
Y.
, and
Kim
,
H. D.
,
1999
, “
Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows
,”
Prog. Aerosp. Sci.
,
35
(
1
), pp.
33
100
.
48.
Carroll
,
B. F.
, and
Dutton
,
J. C.
,
1992
, “
Multiple Normal Shock Wave/Turbulent Boundary-Layer Interactions
,”
J. Propul. Power
,
8
(
2
), pp.
441
448
.
49.
Gnani
,
F.
,
Zare-Behtash
,
H.
, and
Kontis
,
K.
,
2016
, “
Pseudo-Shock Waves and Their Interactions in High-Speed Intakes
,”
Prog. Aerosp. Sci.
,
82
, pp.
36
56
.
50.
Handa
,
T.
,
Kitahara
,
K.
,
Matsuda
,
Y.
, and
Egami
,
Y.
,
2019
, “
Peculiarities of Low-Reynolds-Number Supersonic Flows in Long Microchannel
,”
Microfluid. Nanofluid.
,
23
(
7
), p.
88
.
51.
Mayle
,
R. E.
, and
Metzger
,
D. E.
,
1982
, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Munich, Germany
,
Sept. 6–10
, pp.
87
92
.
52.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
2012
, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,”
ASME J. Turbomach.
,
134
(
2
), p.
021020
.
You do not currently have access to this content.