Abstract

Lattice Boltzmann simulations of corner separation flow in a compressor cascade are presented. The lattice Boltzmann approach is rather new in the context of turbomachinery, and the configuration is known to be particularly challenging for turbulence modeling. The present methodology is characterized by a quasi-autonomous meshing strategy and a limited computational cost (a net ratio of 5 compared to a previous finite-volume compressible Navier–Stokes simulation). The simulation of the reference case (4 deg incidence) shows a good agreement with the experimental data concerning the wall pressure distribution or the distribution of losses. A good description is also obtained when incidence angle is increased to 7 deg, with a span-wise development of the separation. Subsequently, the methodology is used to investigate the sensitivity of the flow to the end-wall boundary-layer thickness. A thinner boundary-layer results in a smaller corner separation, but not a complete elimination. Finally, the ingredients of the wall modeling are analyzed in details. On the one hand, the curvature correction term promotes transition to turbulence on the blade suction side and avoids a spurious separation. On the other hand, the addition of the pressure-gradient correction term allows a wider and more realistic corner separation.

References

1.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2017
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
ASME J. Fluid. Eng.
,
139
(
6
), p.
061101
.
2.
Gao
,
F.
,
Ma
,
W.
,
Zambonini
,
G.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Shao
,
L.
,
2015
, “
Large-eddy Simulation of 3-D Corner Separation in a Linear Compressor Cascade
,”
Phys. Fluids (1994-present)
,
27
(
8
), p.
085105
.
3.
Gao
,
F.
,
Ma
,
W.
,
Sun
,
J.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Liu
,
Y.
,
Lu
,
L.
, and
Shao
,
L.
,
2017
, “
Parameter Study on Numerical Simulation of Corner Separation in LMFA-NACA65 Linear Compressor Cascade
,”
Chinese J. Aeronaut.
,
30
(
1
), pp.
15
30
.
4.
Xia
,
G.
,
Medic
,
G.
, and
Praisner
,
T. J.
,
2018
, “
Hybrid RANS/LES Simulation of Corner Stall in a Linear Compressor Cascade
,”
ASME J. Turbomach.
,
140
(
8
), p.
081004
.
5.
Higuera
,
F. J.
,
Succi
,
S.
, and
Benzi
,
R.
,
1989
, “
Lattice Gas Dynamics with Enhanced Collisions
,”
Europhys. Lett. (EPL)
,
9
(
4
), pp.
345
349
.
6.
Sagaut
,
P.
,
2010
, “
Towards Advanced Subgrid Models for Lattice-Boltzmann-Based Large-Eddy Simulation: Theoretical Formulation
,”
Comput. Math. Appl.
,
59
(
7
), pp.
2194
2199
.
7.
Maros
,
A.
,
Bonnal
,
B.
,
Gonzalez-Martino
,
I.
,
Kopriva
,
J.
, and
Polidoro
,
F.
,
2020
, “
Corner Stall Prediction in a Compressor Linear Cascade Using Very Large Eddy Simulation Lattice-Boltzmann Method
,”
ASME J. Turbomach.
,
142
(
7
), p.
071006
.
8.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
9.
Grad
,
H.
,
1949
, “
On the Kinetic Theory of Rarefied Gases
,”
Commun. Pure Appl. Maths
,
2
(
4
), pp.
331
407
.
10.
Shan
,
X.
, and
He
,
X.
,
1998
, “
Discretization of the Velocity Space in the Solution of the Boltzmann Equation
,”
Phys. Rev. Lett.
,
80
(
1
), pp.
65
68
.
11.
Shan
,
X.
,
Yuan
,
X.-F.
, and
Chen
,
H.
,
2006
, “
Kinetic Theory Representation of Hydrodynamics: A Way Beyond the Navier-Stokes Equation
,”
J. Fluid Mech.
,
550
(
1
), pp.
413
441
.
12.
Bhatnagar
,
P.
,
Gross
,
E.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), p.
511
.
13.
Ricot
,
D.
,
Marié
,
S.
,
Sagaut
,
P.
, and
Bailly
,
C.
,
2009
, “
Lattice Boltzmann Method With Selective Viscosity Filter
,”
J. Comput. Phys.
,
228
(
12
), pp.
4478
4490
.
14.
Leveque
,
E.
,
Touil
,
H.
,
Malik
,
S.
,
Ricot
,
D.
, and
Sengissen
,
A.
,
2018
, “
Wall-Modeled Large-Eddy Simulation of the Flow Past a Rod-Airfoil Tandem by the Lattice Boltzmann Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
5, SI
), pp.
1096
1116
.
15.
Hosseini
,
S. A.
,
Coreixas
,
C.
,
Darabiha
,
N.
, and
Thévenin
,
D.
,
2019
, “
Stability of the Lattice Kinetic Scheme and Choice of the Free Relaxation Parameter
,”
Phys. Rev. E
,
99
(
6
), p.
063305
.
16.
Latt
,
J.
, and
Chopard
,
B.
,
2006
, “
Lattice Boltzmann Method with Regularized Precollision Distribution Functions
,”
Math. Comput. Simul.
,
72
(
2–6
), pp.
165
168
.
17.
Krüger
,
T.
,
Kusumaatmaja
,
H.
,
Kuzmin
,
A.
,
Shardt
,
O.
,
Silva
,
G.
, and
Viggen
,
E. M.
,
2016
,
The Lattice Boltzmann Method: Principles and Practice
,
Springer
,
New York
.
18.
Verschaeve
,
J. C. G.
, and
Müller
,
B.
,
2010
, “
A Curved No-Slip Boundary Condition for the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
229
(
19
), pp.
6781
6803
.
19.
Grad
,
H.
,
1949
, “
On the Kinetic Theory of Rarefied Gases
,”
Commun. Pure Appl. Math.
,
2
(
4
), pp.
331
407
.
20.
Malaspinas
,
O.
, and
Sagaut
,
P.
,
2014
, “
Wall Model for Large-Eddy Simulation Based on the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
275
, pp.
25
40
.
21.
Patel
,
V. C.
, and
Sotiropoulos
,
F.
,
1997
, “
Longitudinal Curvature Effects in Turbulent Boundary Layer
,”
Prog. Aerospace Sci.
,
33
(
1–2
), pp.
1
70
.
22.
Afzal
,
N.
,
1996
, “
Wake Layer in a Turbulent Boundary Layer with Pressure Gradient: A New Approach
,”
IUTAM Symposium on Asymptotic Methods for Turbulent Shear flows at High Reynolds Numbers, Vol. 535
,
Dordrecht
,
K.
Gersten
, ed.,
Kluwer Academic Publisher
, pp.
95
118
.
23.
Tardu
,
F. S.
, and
Maestri
,
R.
,
2010
, “
Wall Shear Stress Modulation in a Turbulent Flow Subjected to Imposed Unsteadiness with Adverse Pressure Gradient
,”
Fluid Dyn. Res.
,
42
(
3
), p.
035510
.
24.
Malaspinas
,
O.
, and
Sagaut
,
P.
,
2014
, “
Wall Model for Large-Eddy Simulation Based on the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
275
, pp.
25
40
.
25.
Lévêque
,
E.
,
Toschi
,
F.
,
Shao
,
L.
, and
Bertoglio
,
J.-P.
,
2007
, “
Shear-improved Smagorinsky Model for Large-Eddy Simulation of Wall-bounded Turbulent Flows
,”
J. Fluid Mech.
,
570
, pp.
491
502
.
26.
Cahuzac
,
A.
,
Boudet
,
J.
,
Borgnat
,
P.
, and
Lévêque
,
E.
,
2010
, “
Smoothing Algorithms for Mean-Flow Extraction in Large-eddy Simulation of Complex Turbulent Flows
,”
Phys. Fluids
,
22
(
12
), p.
125104
.
27.
Touil
,
H.
,
Ricot
,
D.
, and
Lévêque
,
E.
,
2013
, “
Direct and Large-Eddy Simulation of Turbulent Flows on Composite Multi-Resolution Grids by the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
256
, pp.
220
233
.
28.
Gao
,
F.
,
2014
, “
Advanced Numerical Simulation of Corner Separation in a Linear Compressor Cascade
,”
PhD thesis
,
Ecole Centrale de Lyon
.
29.
Frére
,
A.
,
Sørensen
,
N. N.
,
Hillewaert
,
K.
, and
Winckelmans
,
G.
,
2016
, “
Discontinuous galerkin methodology for large-eddy simulations of wind turbine airfoils
,”
J. Phys. Conf. Ser.
,
753
, p.
022037
.
You do not currently have access to this content.