Abstract

An experimental study has been conducted to investigate the effects of surface roughness on the profile loss of a flat-plate with a contoured wall. All of the measurements have been conducted for the suction side pressure gradient of a high-lift low pressure turbine airfoil at the fixed freestream turbulence intensity (Tu) of 3.2% under Reynolds numbers of Rec = 1. 2 · 105 (cruise) and Rec = 5.2 · 105 (take-off). The time-resolved streamwise and wall-normal velocity fields for three different surface roughness values of Ra/C · 105 = 0.065, 4.417, and 7.428 have been measured with a 2D hot-wire probe. At the take-off condition (Rec = 5.2 · 105), attached flow transition occurs, and increased surface roughness increases the loss. For all of the surfaces, momentum deficits in the laminar to early transition region (γ ≈ 0.05) are similar. For the intermediate transition (γ ≈ 0.5), increased roughness reduces the Reynolds stress and accelerates the breakdown of large-scale turbulent spots into small-scale turbulent eddies. Therefore, turbulent energy and momentum deficit are decreased for rough surfaces. For the late transition (γ > 0.9), transitional boundary layers become similar to turbulent boundary layers, and increased surface roughness increases turbulent mixing, boundary layer thickness, and, hence, the momentum deficit. On the other hand, at the cruise condition (Rec = 1.2 · 105), separated flow transition occurs and increased surface roughness decreases loss. Since the portion of turbulent flow is relatively small, the overall profile loss is mainly determined by the momentum deficit generated during transition. Increased roughness decreases the maximum height and length of the separation bubble but does not affect the separation bubble onset location. The beneficial effects of increased surface roughness on the profile loss appear in the separated shear layer and reattachment. Increased surface roughness increases turbulent mixing in the separated shear layer, reducing the shear layer thickness and momentum deficit. In addition, increased surface roughness reduces the length scale and turbulence intensity of the shed vortices. Consequently, turbulent mixing and momentum deficit during the reattachment of boundary layers are decreased, resulting in a lower profile loss.

References

1.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
2.
Wisler
,
D. C.
,
1998
, “
The Technical and Economic Relevance of Understanding Boundary Layer Transition in Gas Turbine Engines
,”
Minnowbrook II, 1998 Workshop on Boundary Layer Transition in Turbomachines, NASA/CP-1998-206958
.
3.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
4.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1997
, “
Development of Blade Profiles for Low-Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.
5.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
,
2000
, “
High Lift and Aft-Loaded Profiles for Low-Pressure Turbines
,”
ASME J. Turbomach.
,
123
(
2
), pp.
181
188
.
6.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.
7.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
(
1
), pp.
185
212
.
8.
Halstead
,
D. E.
,
1996
, “
Boundary Layer Development in Multi-Stage Low Pressure Turbines
,”
Retrospective Theses and Dissertations
, Digital Repository, Iowa State University, p.
11528
.
9.
Taylor
,
R. P.
,
1990
, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
175
180
.
10.
Tarada
,
F.
, and
Suzuki
,
M.
,
1993
, “
External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness
,”
ASME Paper No. 93-GT-074
.
11.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
12.
Bammert
,
K.
, and
Sandstede
,
H.
,
1972
, “
Measurements Concerning the Influence of Surface Roughness and Profile Changes on the Performance of Gas Turbines
,”
ASME J. Eng. Power
,
94
(
3
), pp.
207
213
.
13.
Yun
,
Y. I.
,
Park
,
I. Y.
, and
Song
,
S. J.
,
2005
, “
Performance Degradation due to Blade Surface Roughness in a Single-Stage Axial Turbine
,”
ASME J. Turbomach.
,
127
(
1
), pp.
137
143
.
14.
Hummel
,
F.
,
Lötzerich
,
M.
,
Cardamone
,
P.
, and
Fottner
,
L.
,
2005
, “
Surface Roughness Effects on Turbine Blade Aerodynamics
,”
ASME J. Turbomach.
,
127
(
3
), pp.
453
461
.
15.
Montis
,
M.
,
Niehuis
,
R.
, and
Fiala
,
A.
,
2010
, “
Effect of Surface Roughness on Loss Behavior, Aerodynamic Loading and Boundary Layer Development of a Low-Pressure Gas Turbine Airfoil
,”
ASME Paper No. GT2010-23317
.
16.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2011
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part II: Aerodynamic Losses
,”
ASME J. Turbomach.
,
134
(
4
), p.
041007
.
17.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
.
18.
Vadlamani
,
N. R.
,
Tucker
,
P. G.
, and
Durbin
,
P.
,
2018
, “
Distributed Roughness Effects on Transitional and Turbulent Boundary Layers
,”
Flow Turbulence Combust.
,
100
(
3
), pp.
627
649
.
19.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2005
, “
Boundary-Layer Transition Affected by Surface Roughness and Free-Stream Turbulence
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
449
457
.
20.
Stieger
,
R. D.
,
2002
, “
The Effects of Wakes on Separating Boundary Layers in Low-Pressure Turbines
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge, UK
.
21.
Jeong
,
H.
,
Lee
,
S. W.
, and
Song
,
S. J.
,
2019
, “
Measurement of Transitional Surface Roughness Effects on Flat-Plate Boundary Layer Transition
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
074501
.
22.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Marsden
,
R.
,
2016
, “
The Limitations of Using “Ra” to Describe Surface Roughness
,”
ASME J. Turbomach.
,
138
(
10
), p.
101003
.
23.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
24.
Roberts
,
Q. D. H.
,
1997
, “
The Trailing Edge Loss of Subsonic Turbine Blades
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge, England
.
25.
Coull
,
J. D.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
,
2010
, “
Velocity Distributions for Low Pressure Turbines
,”
ASME J. Turbomach.
,
132
(
4
), p.
041006
.
26.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Pratt
,
C. M.
,
2003
, “
Conditional Sampling in a Transitional Boundary Layer Under High Freestream Turbulence Conditions
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
28
37
.
27.
Emmon
,
H. W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary Layer—Part I
,”
J. Aeronaut. Sci.
,
18
(
7
), pp.
490
498
.
28.
Corke
,
T. C.
,
Bar-Sever
,
A.
, and
Morkovin
,
M. V.
,
1986
, “
Experiments on Transition Enhancement by Distributed Roughness
,”
Phys. Fluids
,
29
(
10
), pp.
3199
3213
.
29.
Cantwell
,
B. J.
,
1981
, “
Organized Motion in Turbulent Flow
,”
Annu. Rev. Fluid Mech.
,
13
(
1
), pp.
457
515
.
30.
Gad-El-Hak
,
M.
,
Blackwelderf
,
R. F.
, and
Riley
,
J. J.
,
1981
, “
On the Growth of Turbulent Regions in Laminar Boundary Layers
,”
J. Fluid Mech.
,
110
, pp.
73
95
.
31.
Nolan
,
K. P.
, and
Zaki
,
T. A.
,
2013
, “
Conditional Sampling of Transitional Boundary Layers in Pressure Gradients
,”
J. Fluid Mech.
,
728
, pp.
306
339
.
32.
Blackwelder
,
R. F.
, and
Eckelmann
,
H.
,
1979
, “
Streamwise Vortices Associated With the Bursting Phenomenon
,”
J. Fluid Mech.
,
94
(
3
), pp.
577
594
.
33.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
34.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer
,
New York
.
35.
Bandyopadhyay
,
P. R.
, and
Watson
,
R. D.
,
1988
, “
Structure of Rough-Wall Turbulent Boundary Layers
,”
Phys. Fluids
,
31
(
7
), pp.
1877
1883
.
36.
Wallace
,
J. M.
,
Eckelmann
,
H.
, and
Brodkey
,
R. S.
,
1972
, “
The Wall Region in Turbulent Shear Flow
,”
J. Fluid Mech.
,
54
(
1
), pp.
39
48
.
37.
Lu
,
S. S.
, and
Willmarth
,
W. W.
,
1973
, “
Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
60
(
3
), pp.
481
511
.
38.
Saddoughi
,
S. G.
, and
Veeravalli
,
S. V.
,
1994
, “
Local Isotropy in Turbulent Boundary Layers at High Reynolds Number
,”
J. Fluid Mech.
,
268
, pp.
333
372
.
39.
Djenidi
,
L.
,
Elavarasan
,
R.
, and
Antonia
,
R. A.
,
1999
, “
The Turbulent Boundary Layer Over Transverse Square Cavities
,”
J. Fluid Mech.
,
395
(
1
), pp.
271
294
.
40.
Krogstad
,
,
Antonia
,
R. A.
, and
Browne
,
L. W. B.
,
1992
, “
Comparison Between Rough- and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
245
, pp.
599
617
.
41.
Horton
,
H. P.
,
1968
, “
Laminar Separation in Two and Three-Dimensional Incompressible Flow
,”
Ph.D. thesis
,
Queen Mary University of London
,
London, UK
.
42.
Durbin
,
P.
, and
Wu
,
X.
,
2007
, “
Transition Beneath Vortical Disturbances
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
107
128
.
43.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.
44.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low and Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
45.
Hain
,
R.
,
Kahler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.
46.
Marxen
,
O.
, and
Henningson
,
D. S.
,
2011
, “
The Effect of Small-Amplitude Convective Disturbances on the Size and Bursting of a Laminar Separation Bubble
,”
J. Fluid Mech.
,
671
, pp.
1
33
.
47.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech
,
681
, pp.
370
410
.
48.
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2011
, “
Interaction of Viscous and Inviscid Instability Modes in Separation-Bubble Transition
,”
Phys. Fluids
,
23
(
12
), p.
124102
.
49.
Kuester
,
M. S.
, and
White
,
E. B.
,
2015
, “
Roughness Receptivity and Shielding in a Flat Plate Boundary Layer
,”
J. Fluid Mech.
,
777
, pp.
430
460
.
50.
Walker
,
G. J.
,
1989
, “
Transitional Flow on Axial Turbomachine Blading
,”
AIAA J.
,
27
(
5
), pp.
595
602
.
51.
Volino
,
R. J.
,
2002
, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions: Part 2—Turbulence Spectra
,”
ASME J. Turbomach.
,
124
(
4
), pp.
656
664
.
You do not currently have access to this content.