Abstract

The present work uses stereoscopic particle image velocimetry (SPIV) to analyze the compressor inlet flow field, with specific emphasis on its turbulence characteristics during flow reversal in order to gain further insight into the inlet flow structures. SPIV experiments were carried out at the inlet of a centrifugal compressor without any recirculation channel at four different rotational speeds (from 80 to 140 krpm) and over the entire mass flow range (from choke to surge) at each speed. Detailed analyses have been carried out for the mean velocity field, the mean vorticity field, and the turbulent statistics including turbulent kinetic energy, Reynolds stress, and the one-dimensional energy spectra. The turbulent kinetic energy at the compressor inlet was observed to increase rapidly along a speed line with decreasing mass flowrate once flow reversal started, and the turbulence became more anisotropic. As the flowrate was reduced (along a speed line), the zone with maximum turbulent kinetic energy moved from the periphery toward the center of the inlet duct and also occurred further upstream from the impeller. The Reynolds stress distributions suggest that the Boussinesq assumption of an isotropic eddy viscosity may not be appropriate after the detection of flow reversal. The Reynolds shear stresses were observed to change signs with their corresponding velocity gradients at the tested mass flowrates at different rotational speeds. At the investigated flowrates, the radial gradients in the axial and tangential velocities were found to be most dominant.

References

1.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Krieger
,
Malabar, FL
.
2.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI
,
Vermont
.
3.
McDougall
,
N.
,
Cumpsty
,
N.
, and
Hynes
,
T.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.
4.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
5.
Iwaraki
,
K.
,
Furukawa
,
M.
,
Ibaraki
,
S.
, and
Tomita
,
I.
,
2009
, “
Unsteady and Three-Dimensional Flow Phenomena in a Transonic Centrifugal Compressor Impeller at Rotating Stall
,”
ASME Turbo Expo: Power for Land, Sea, and Air
,
Orlando
, ASME Technical Paper GT2009-59516: 1611-1622.
6.
Tomita
,
I.
,
Ibaraki
,
S.
,
Furukawa
,
M.
, and
Yamada
,
K.
,
2013
, “
The Effect of Tip Leakage Vortex for Operating Range Enhancement of Centrifugal Compressor
,”
ASME J. Turbomach.
,
138
(
1
), p.
051020
.
7.
Cao
,
T.
,
Kanzaka
,
T.
,
Xu
,
L.
, and
Brandvik
,
T.
,
2019
, “
Tip Leakage Flow Instability in a Centrifugal Compressor
,”
ASME Turbo Expo
,
Phoenix
, ASME Technical Paper GT2019-90217.
8.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
9.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors, Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power.
,
98
(
2
), pp.
190
198
.
10.
Fink
,
D. A.
,
Cumptsy
,
N. A.
, and
Greitzer
,
E. M.
,
1992
, “
Surge Dynamics in a Free-Spool Centrifugal Compression System
,”
ASME J. Turbomach.
,
114
(
2
), pp.
321
332
.
11.
Dehner
,
R.
,
Selamet
,
A.
,
Keller
,
P.
, and
Becker
,
M.
,
2016
, “
Simulation of Deep Surge in a Turbocharger Compression System
,”
ASME J. Turbomach.
,
138
(
11
), p.
111002
.
12.
Westerweel
,
J.
,
Elsinga
,
G. E.
, and
Adrian
,
R. J.
,
2013
, “
Particle Image Velocimetry for Complex and Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
409
436
.
13.
Paone
,
N.
,
Riethmuller
,
M. L.
, and
Van den Braembussche
,
R. A.
,
1989
, “
Experimental Investigation of the Flow in the Vaneless Diffuser of a Centrifugal Pump by Particle Image Displacement Velocimetry
,”
Exp. Fluids
,
7
(
6
), pp.
371
378
.
14.
Wernet
,
M. P.
,
2000
, “
A Flow Field Investigation in the Diffuser of a High-Speed Centrifugal Compressor Using Digital Particle Imaging Velocimetry
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
1007
1022
.
15.
Wernet
,
M. P.
,
Bright
,
M. M.
, and
Skoch
,
G. J.
,
2001
, “
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
,”
ASME J. Turbomach.
,
123
(
2
), pp.
418
428
.
16.
Lang
,
H.
,
Mørck
,
T.
, and
Woisetschläger
,
J.
,
2002
, “
Stereoscopic Particle Image Velocimetry in a Transonic Turbine Stage
,”
Exp. Fluids
,
32
(
6
), pp.
700
709
.
17.
Voges
,
M.
,
Schnell
,
R.
,
Willert
,
C.
,
Mönig
,
R.
,
Müller
,
M. W.
, and
Zscherp
,
C.
,
2011
, “
Investigation of Blade Tip Interaction With Casing Treatment in a Transonic Compressor—Part 1: Particle Image Velocimetry
,”
ASME J. Turbomach.
,
133
(
1
), p.
011007
.
18.
Guillou
,
E.
,
Gancedo
,
M.
,
Gutmark
,
E.
, and
Mohamed
,
A.
,
2012
, “
PIV Investigation of the Flow Induced by a Passive Surge Control Method in a Radial Compressor
,”
Exp. Fluids
,
53
(
3
), pp.
619
635
.
19.
Gancedo
,
M.
,
Gutmark
,
E.
, and
Guillou
,
E.
,
2016
, “
PIV Measurements of the Flow at the Inlet of a Turbocharger Centrifugal Compressor with Recirculation Casing Treatment Near the Inducer
,”
Exp. Fluids
,
57
(
2
), p.
16
.
20.
Banerjee
,
D. K.
,
Dehner
,
R.
,
Selamet
,
A.
,
Miazgowicz
,
K.
,
Tallio
,
K.
,
Keller
,
P.
, and
Shutty
,
J.
,
2019
, “
Investigation of Flow Field at the Inlet of a Turbocharger Compressor Using Digital Particle Image Velocimetry
,”
ASME J. Turbomach.
,
141
(
12
), p.
121003
.
21.
Banerjee
,
D. K.
,
Dehner
,
R.
,
Selamet
,
A.
,
Miazgowicz
,
K.
,
Brewer
,
T.
,
Keller
,
P.
,
Shutty
,
J.
, and
Schwarz
,
A.
,
2019
, “
Investigation of Cross-Sectional Velocity Field Near the Inducer Plane of a Turbocharger Compressor Using 2D Particle Image Velocimetry
,”
ASME Turbo Expo
,
June 17–21
,
Phoenix
,
AZ
, ASME Technical Paper GT2019-90384.
22.
Banerjee
,
D. K.
,
Dehner
,
R.
,
Selamet
,
A.
, and
Miazgowicz
,
K.
,
2021
, “
Impact of Rotational Speed on Turbocharger Compressor Surge Through Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061501
.
23.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
24.
Moore
,
J.
,
Shaffer
,
D. M.
, and
Moore
,
J. G.
,
1987
, “
Reynolds Stress and Dissipation Mechanisms Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
258
267
.
25.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1990
, “
Secondary Flow Measurements in a Turbine Cascade with High Inlet Turbulence
,”
ASME Gas Turbine and Aeroengine Congress and Exposition
,
Brussels
,
June 11–14
, ASME Technical Paper 90-GT-20.
26.
Perdichizzi
,
A.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
1992
, “
Reynolds Stress Distribution Downstream of a Turbine Cascade
,”
Exp. Therm. Fluid. Sci.
,
5
(
3
), pp.
338
350
.
27.
Uhlenhake
,
G.
,
Selamet
,
A.
,
Fogarty
,
K.
,
Tallio
,
K.
, and
Keller
,
P.
,
2011
,
Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers
,
SAE Paper No. 2011-01-1644
.
28.
LaVision Inc.
,
2017
, DaVis (Version 8.4.0.27250), Ypsilanti, MI.
29.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
5
), pp.
1096
1100
.
30.
Nogueira
,
J.
,
Lecuona
,
A.
, and
Rodríguez
,
P. A.
,
1997
, “
Data Validation, False Vectors Correction and Derived Magnitudes Calculation on PIV Data
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1493
1501
.
31.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
32.
Willert
,
C. E.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
(
4
), pp.
181
196
.
33.
Westerweel
,
J.
,
2000
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
Suppl 1
), pp.
3
12
.
34.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.
35.
Doeblin
,
E.
,
2004
,
Measurement System Application and Design
,
McGraw Hill Publishers
,
New York
.
36.
Baines
,
N. C.
,
2005
,
Fundamentals of Turbocharging
,
Concepts NREC
,
Vermont
. ISBN 0-933283-14-8.
37.
Yilmaz
,
I.
,
2013
, “
Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame
,”
ASME J. Energ Resour. Technol.
,
135
(
4
), p.
042204
.
38.
Davidson
,
P. A.
,
2015
,
Turbulence
,
Oxford University Press
,
New York, NY
.
39.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
The MIT Press
,
Cambridge, MA
.
40.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery tip-Clearance Flow
,”
J. Fluid Mech.
,
586
, pp.
177
204
.
41.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
University Press
,
Cambridge
.
42.
Xu
,
D.
, and
Chen
,
J.
,
2013
, “
Accurate Estimate of Turbulent Dissipation Rate Using PIV Data
,”
Exp. Therm. Fluid. Sci.
,
44
, pp.
662
672
.
43.
Richardson
,
L. F.
,
1922
,
Weather Prediction by Numerical Process
,
Cambridge University Press
,
Cambridge
.
44.
Saddoughi
,
S.
, and
Veeravalli
,
S.
,
1994
, “
Local Isotropy in Turbulent Boundary Layers at High Reynolds Number
,”
J. Fluid Mech.
,
268
, pp.
333
362
.
45.
Saarenrinne
,
P.
,
Piirto
,
M.
, and
Eloranta
,
H.
,
2001
, “
Experiences of Turbulence Measurement with PIV
,”
Meas. Sci. Technol.
,
12
(
11
), pp.
1904
1910
.
46.
Helland
,
K. N.
, and
Van Atta
,
C. W.
,
1977
, “
Spectral Energy Transfer in High Reynolds Number Turbulence
,”
J. Fluid Mech.
,
79
(
2
), pp.
337
359
.
47.
Citriniti
,
J. H.
, and
George
,
W. K.
,
1997
, “
The Reduction of Spatial Aliasing by hot-Wire Anemometer Probes
,”
Exp. Fluids
,
23
(
3
), pp.
217
224
.
48.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.
You do not currently have access to this content.