Abstract

This article describes the transport and the interaction of pulsating entropy waves generated by combustor burners within a high-pressure turbine stage for aeronautical application. Experiments and computational fluid dynamics (CFD) simulations were carried out in the context of the European Research Project RECORD. Experimental campaigns considering burner-representative temperature fluctuations (in terms of spot shape, fluctuation frequency, and total temperature variation percentage) injected upstream of an un-cooled high-pressure gas turbine stage have been performed in the high-speed closed-loop test rig of the Fluid Machine Laboratory (LFM) of the Politecnico di Milano (Italy). The pulsating entropy waves are injected at the stage inlet in streamwise direction at four different azimuthal positions featuring a 7% overtemperature with respect to the main flow with a frequency of 90 Hz. Detailed time-resolved temperature measurements (in the range of 0–200 Hz) upstream and downstream of the stage, as well as in the stator–rotor axial gap, were performed. Time-accurate CFD simulations with and without entropy fluctuations imposed at the stage inlet were performed with the TRAF code, developed by the Università degli Studi di Firenze (Italy). A numerical postprocessing procedure, based on the discrete Fourier transform (DFT) of the conservative variables, has been implemented to extract the low-frequency content connected to the entropy fluctuations. Measurements highlighted a significant attenuation of the entropy wave spot throughout their transport within the stator channel and their interaction with the rotor blade rows, highly depending on their injection azimuthal position. Simulations show an overall good agreement with the experiments on the measurement traverses, especially at the stage outlet. By exploiting the combination of experiments and simulations, the aerodynamic and thermal implications of the temperature fluctuation injected upstream of the stage were properly assessed, thus allowing suggest useful information to the designer. The comparison with the experiments confirms the accuracy of the CFD method to solve the periodic, but characterized by a low-frequency content event, associated with the entropy wave fluctuation.

References

1.
Sharma
,
O.
,
Pickett
,
G.
, and
Ni
,
R.
,
1992
, “
Assessment of Unsteady Flow in Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
79
90
.
2.
Butler
,
T.
,
Sharma
,
O.
,
Joslyn
,
H.
, and
Dring
,
R.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.
3.
Dorney
,
D.
, and
Sondak
,
D.
,
2000
, “
Effects of Tip Clearance on Hot Streak Migration in a High Subsonic Single Stage Turbine
,”
ASME J. Turbomach.
,
122
(
4
), pp.
613
620
.
4.
An
,
B.
,
Liu
,
J.
, and
Jiang
,
H.
,
2009
, “
Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in Turbine Stage
,”
ASME J. Turbomach.
,
131
(
3
), p.
031015
.
5.
Pinelli
,
L.
,
Poli
,
F.
,
Arnone
,
A.
,
Guerin
,
S.
,
Torzo
,
D.
,
Favre
,
C.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2015
, “
On the Numerical Evaluation of Tone Noise Emissions Generated by a Turbine Stage: An In-depth Comparison Among Different Computational Methods
,”
ASME Turbo Expo 2015
,
Montreal, Quebec, Canada
,
June 15–19
,
ASME Paper GT2015-42376
.
6.
Knoblock
,
K.
,
Neuhaus
,
L.
,
Bake
,
F.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Experimental Assessment of Noise Generation and Transmission in a High-Pressure Transonic Turbine Stage
,”
ASME J. Turbomach.
,
139
(
10
), p.
101006
.
7.
Tyler
,
J.
, and
Sofrin
,
T.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
Trans. Soc. Auto. Eng.
,
70
(
1
), pp.
309
332
.
8.
Munk
,
M.
, and
Prim
,
R.
,
1947
, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
,
33
(
5
), pp.
137
141
.
9.
Hawthorne
,
W.
,
1974
, “
Secondary Vorticity in Stratified Compressible Fluids in Rotating Systems
,”
Technical Report 63
.
Department of Engineering, University of Cambridge, Cambridge
.
10.
Giles
,
M.
, and
Saxer
,
A.
,
1994
, “
Predictions of Three-Dimensional Steady and Unsteady Inviscid Transonic Stator/Rotor Interaction With Inlet Radial Temperature Nonuniformity
,”
ASME J. Turbomach.
,
116
(
3
), pp.
347
357
.
11.
Ong
,
J.
, and
Miller
,
R.
,
2012
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051002
.
12.
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Hot Streak Evolution in an Axial Hp Turbine Stage
,”
Int. J. Turbomach., Propulsion Power
,
2
(
2
), p.
6
.
13.
Koupper
,
C.
,
Bonneau
,
G.
, and
Gicquel
,
L.
,
2016
, “
Large Eddy Simulation of the Combustor Turbine Interface: Study of the Potential and Clocking Effects
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
,
ASME Paper GT2016-56443
.
14.
Gaetani
,
P.
,
Persico
,
G.
,
Pinelli
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Computational and Experimental Study of Hot Streak Transport Within the First Stage of a Gas Turbine
,”
ASME J. Turbomach.
,
142
(
8
), p.
081002
.
15.
Morgans
,
A. S.
, and
Durán
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.
16.
Gaetani
,
P.
, and
Persico
,
G.
,
2018
, “
Transport of Entropy Waves Within a Hp Turbine Stage
,”
ASME J. Turbomach.
,
141
(
3
), p.
031006
.
17.
Bicchi
,
M.
,
Pinelli
,
L.
,
Marconcini
,
M.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2019
, “
Numerical Study of a High-Pressure Turbine Stage With Inlet Distortions
,”
AIP. Conf. Proc.
,
2191
(
020020
), p.
12
.
18.
Becerril
,
C.
,
Moreau
,
S.
, and
Gicquel
,
L. Y. M.
,
2018
, “
Study of Combustion Noise Generation in a Realistic Turbine Stage Configuration
,”
ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
,
ASME Paper GT2018-75062
.
19.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2007
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps—Part I: Three-Dimensional Time-Averaged Flow Field
,”
ASME J. Turbomach.
,
129
(
3
), pp.
572
579
.
20.
Gaetani
,
P.
,
Persico
,
G.
, and
Spinelli
,
A.
,
2017
, “
Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine
,”
Appl. Sci.
,
7
(
3
), p.
259
.
21.
Gaetani
,
P.
,
Persico
,
G.
,
Spinelli
,
A.
,
Sandu
,
C.
, and
Niculescu
,
F.
,
2015
, “
Entropy Wave Generator for Indirect Combustion Noise Experiments in a High-Pressure Turbine
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
.
22.
Persico
,
G.
,
Gaetani
,
P.
, and
Spinelli
,
A.
,
2017
, “
Assessment of Synthetic Entropy Waves for Indirect Combustion Noise Experiments in Gas Turbines
,”
Exp. Therm. Fluid. Sci.
,
88
(
1
), pp.
376
388
.
23.
Gaetani
,
P.
,
Persico
,
G.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of New Concept Fast-Response Pressure Probes
,”
Meas. Sci. Technol.
,
16
(
9
), p.
1741
.
24.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.
25.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Comparison of the AUSM+-up and Other Advection Schemes for Turbomachinery Applications
,”
Shock Waves
,
29
(
1
), p.
1
.
26.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Ind Inc.
,
La Cañada, CA
.
27.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1995
, “
Integration of Navier–Stokes Equations Using Dual Time Stepping and a Multigrid Method
,”
AIAA J.
,
33
(
6
), pp.
985
990
.
28.
Giovannini
,
M.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Dominguez
,
A.
,
2015
, “
A Hybrid Parallelization Strategy of a CFD Code for Turbomachinery Applications
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
.
29.
Pacciani
,
R.
, and
Spano
,
E.
,
2006
, “
Numerical Investigation of the Effect of Roughness and Passing Wakes on LP Turbine Blades Performance
,”
ASME Turbo Expo 2006
,
Barcelona, Spain
,
May 8–11
,
ASME Paper GT2006- 90221
.
30.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2008
, “
Numerical Investigation of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
130
(
1
), p.
011010
.
31.
Marconcini
,
M.
,
Bianchini
,
A.
,
Checcucci
,
M.
,
Ferrara
,
G.
,
Arnone
,
A.
,
Ferrari
,
L.
,
Biliotti
,
D.
, and
Rubino
,
D. T.
,
2017
, “
A Three-Dimensional Time-Accurate Computational Fluid Dynamics Simulation of the Flow Field Inside a Vaneless Diffuser During Rotating Stall Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021001
.
32.
Vanti
,
F.
,
Pinelli
,
L.
,
Poli
,
F.
, and
Arnone
,
A.
,
2017
, “
Aeroelastic Investigation of Turbine Blade Assemblies: Cluster System and Mistuned Rows
,”
12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Stockholm, Sweden
,
Apr. 3–7
.
33.
Pinelli
,
L.
,
Poli
,
F.
,
Di Grazia
,
E.
,
Arnone
,
A.
, and
Torzo
,
D.
,
2013
, “
A Comprehensive Numerical Study of Tone Noise Emissions in a Multistage Cold Flow Rig
,”
19th AIAA/CEAS Aeroacoustic Conference
,
Berlin, Germany
,
May 27–29
,
AIAA paper 2013-2104
.
34.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Scotti Del Greco
,
A.
, and
Biagi
,
R.
,
2012
, “
Aerodynamic Investigation of a High Pressure Ratio Turbo-Expander for Organic Rankine Cycle Applications
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
,
ASME Paper GT2012-69409
.
35.
Persico
,
G.
,
Mora
,
A.
,
Gaetani
,
P.
, and
Savini
,
M.
,
2012
, “
Unsteady Aerodynamics of a Low Aspect Ratio Turbine Stage: Modeling Issues and Flow Physics
,”
ASME J. Turbomach.
,
134
(
6
), p.
061030
.
You do not currently have access to this content.