Abstract

In the industrial simulation of flow phenomena, turbulence modeling is of prime importance. Due to their low computational cost, Reynolds-averaged methods (RANS) are predominantly used for this purpose. However, eddy viscosity RANS models are often unable to adequately capture important flow physics, specifically when strongly anisotropic turbulence and vortex structures are present. In such cases, the more costly 7-equation Reynolds stress models often lead to significantly better results. Unfortunately, these models are not widely used in the industry. The reason for this is not mainly the increased computational cost, but the stability and convergence issues such models usually exhibit. In this article, we present a robust implementation of a Reynolds stress model that is solved in a coupled manner, increasing stability and convergence speed significantly compared to segregated implementations. In addition, the decoupling of the velocity and Reynolds stress fields is addressed for the coupled equation formulation. A special wall function is presented that conserves the anisotropic properties of the model near the walls on coarser meshes. The presented Reynolds stress model is validated on a series of semi-academic test cases and then applied to two industrially relevant situations, namely, the tip vortex of a NACA0012 profile and the Aachen Radiver radial compressor case.

References

1.
Chou
,
P. Y.
,
1945
, “
On Velocity Correlations and the Solutions of the Equations of Turbulent Fluctuation
,”
Q. Appl. Math.
,
3
(
1
), pp.
38
54
.
2.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
3.
Wilcox
,
D.
,
2008
, “
Formulation of the kω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.
4.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transf.
,
4
, pp.
625
632
.
5.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
6.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.
7.
Johansson
,
A. V.
,
Hallbäck
,
M.
, and
Lindborg
,
E.
,
1994
, “
Modelling of Rapid Pressure-Strain in Reynolds Stress Closures; Difficulties Associated With Rotational Mean Flows
,”
Appl. Sci. Res.
,
53
(
1–2
), pp.
119
137
.
8.
Wilcox
,
D.
,
2006
,
Turbulence Modeling for Cfd. No. Bd. 1 in Turbulence Modeling for CFD
,
DCW Industries
.
9.
Eisfeld
,
B.
, and
Brodersen
,
O.
,
2005
, “
Advanced Turbulence Modelling and Stress Analysis for the DLR-F6 Configuration
,”
23rd AIAA Applied Aerodynamics Conference
,
Toronto, Ontario Canada
,
June 6–9
, pp.
1
14
.
10.
Lai
,
Y.
,
1995
, “
Computational Method of Second-Moment Closure in Complex Geometries
,”
AIAA J.
,
33
(
8
), pp.
1426
1432
.
11.
Mangani
,
L.
,
Casartelli
,
C.
, and
Darwish
,
M.
,
2019
, “
Coupled Pressure Based CFD Solver for Turbomachinery Flows: Overview of Applications
,”
13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Lausanne, Switzerland
,
Apr. 8–12
, pp.
1
10
.
12.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2015
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction With OpenFOAM and Matlab
, 1st ed.,
Springer Publishing Company, Inc
.,
Basel, Switzerland
.
13.
Mangani
,
L.
,
Darwish
,
M.
, and
Moukalled
,
F.
,
2014
, “
Development of a Novel Pressure-Based Coupled CFD Solver for Turbulent Compressible Flows in Turbomachinery Applications
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, pp.
1
13
.
14.
Menter
,
F. R.
,
1994
, “
Two Equation Eddy Viscosity Turbulence Model for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1604
.
15.
Morsbach
,
C.
,
2016
, “
Reynolds Stress Modelling for Turbomachinery Flow Applications
,”
PhD thesis
,
Deutsches Zentrum für Luft-und Raumfahrt
,
Köln, Germany
.
16.
Ghia
,
U.
,
Ghia
,
K.
, and
Shin
,
C.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.
17.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
18.
Menter
,
F.
,
Ferreira
,
J.
,
Esch
,
T.
, and
Konno
,
B.
,
2003
, “
The SST Turbulence Model With Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines
,”
Proceedings of the International Gas Turbine Congress
,
Tokyo, Japan
,
Nov. 2–7
, pp.
2
7
.
19.
Apsley
,
D.
,
2007
, “
CFD Calculation of Turbulent Flow With Arbitrary Wall Roughness
,”
Flow Turbul. Combust.
,
78
(
2
), pp.
153
175
.
20.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of Rans Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
.
21.
Jespersen
,
D. C.
,
Pulliam
,
T. H.
, and
Childs
,
M. L.
,
2016
, “
Overflow Turbulence Modeling Resource Validation Results
,”
NASA, NASA Ames Research Center
,
Moffett Field, CA
,
Technical Report, Report No. 20190000252
.
22.
Eisfeld
,
B.
,
Rumsey
,
C.
, and
Togiti
,
V.
,
2016
, “
Verification and Validation of a Second-Moment-Closure Model
,”
AIAA J.
,
54
(
5
), pp.
1
18
.
23.
Smits
,
A. J.
,
Young
,
S. T. B.
, and
Bradshaw
,
P.
,
1979
, “
The Effect of Short Regions of High Surface Curvature on Turbulent Boundary Layers
,”
J. Fluid Mech.
,
94
(
2
), pp.
209
242
.
24.
Greenblatt
,
D.
,
Paschal
,
K. B.
,
Yao
,
C.-S.
,
Harris
,
J.
,
Schaeffler
,
N. W.
, and
Washburn
,
A. E.
,
2006
, “
Experimental Investigation of Separation Control Part 1: Baseline and Steady Suction
,”
AIAA J.
,
44
(
12
), pp.
2820
2830
.
25.
Greenblatt
,
D.
,
Paschal
,
K. B.
,
Yao
,
C.-S.
, and
Harris
,
J.
,
2006
, “
Experimental Investigation of Separation Control Part 2: Zero Mass-flux Oscillatory Blowing
,”
AIAA J.
,
44
(
12
), pp.
2831
2845
.
26.
Naughton
,
J. W.
,
Viken
,
S. A.
, and
Greenblatt
,
D.
,
2006
, “
Skin-Friction Measurements on the NASA Hump Model
,”
AIAA J.
,
44
(
6
), pp.
1255
1265
.
27.
Iaccarino
,
G.
,
Ooi
,
A.
,
Reif
,
B. A. P.
, and
Durbin
,
P. A.
,
1999
, “
Rans Simulations of Rotating Flows
,”
Annual Research Briefs
,
Center for Turbulence Research, Stanford University
,
CA
, pp.
257
266
.
28.
Smirnov
,
P.
, and
Menter
,
F.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
041010
.
29.
Ziegler
,
K. U
,
2003
, “
Experimentelle Untersuchung Der Laufrad-Diffusor-Interaktion in Einem Radialverdichter Variabler Geometrie
,”
PhD thesis
,
Aachen. Zugl.
:
Aachen, Techn. Hochsch., Diss
,
Aachen, Germany
.
30.
Hanimann
,
L.
,
Casartelli
,
E.
, and
Mangani
,
L.
,
2014
, “
Reviewing the Implicit Mixing Plane Approach: Theoretical and Applied Cases
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, pp.
1
11
.
You do not currently have access to this content.