Abstract

A simple nondimensional model to describe the flutter onset of two-fin straight labyrinth seals (Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006) is extended to account for nonisentropic flow perturbations. The isentropic relationship is replaced by the more general integral energy equation of the inter-fin cavity. A new expression for the Corral and Vega stability criterion is derived, which is very consistent with the previous model in the whole design space of the seal but for torsion centers located in the high-pressure side close to the seal. The new model formally depends on more dimensionless parameters since the existing parameter grouping of the previous model does not hold anymore, but this dependency is weak in relative terms. The model blends the limit where the discharge time of the inter-fin cavity is much longer than the vibration period, and the flow is nearly isentropic, and the opposite limit, where the perturbations are isothermic, gracefully. A few numerical examples obtained using a three-dimensional linearized frequency domain solver are included to support the model and show that the trends are correct, but the body of the numerical work will be presented in a separated article. The matching between the work-per-cycle obtained with the model and frequency domain solver is good. It is shown that some weird trends obtained using linearized unsteady simulations are qualitatively consistent with the current model but not with the previous one (Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006). The largest differences between the new and the previous model are seen when the seal is supported at the high-pressure side.

References

1.
Corral
,
R.
, and
Vega
,
A.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background
,”
ASME J. Turbomach.
,
140
(
10
), p.
121006
. 10.1115/1.4041373
2.
Chupp
,
R.
,
Hendricks
,
R.
,
Lattime
,
S.
, and
Steinetz
,
B.
,
2006
, “
Sealing in Turbomachinery
,”
AIAA J. Propulsion Power
,
22
(
2
), pp.
314-
349
. 10.2514/1.17778
3.
Vahdati
,
M.
,
Smith
,
N.
, and
Zhao
,
F.
,
2015
, “
Influence of Intake on Fan Blade Flutter
,”
ASME J. Turbomach.
,
137
(
8
), p.
081002
. 10.1115/1.4029240
4.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils - Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
. 10.1115/1.4031776
5.
Corral
,
R.
,
Beloki
,
J.
,
Calza
,
P.
, and
Elliot
,
R.
,
2019
, “
Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig
,”
AIAA J.
,
57
(
2
), pp.
782
795
. 10.2514/1.J056943
6.
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2019
, “
Improving the Flutter Margin of an Unstable Fan Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071006
. 10.1115/1.4042645
7.
Alford
,
J. S.
,
1971
, “
Labyrinth Seal Designs Have Benefitted From Development and Service Experience
,”
SAE International
, p.
710435
. https://doi.org/10.4271/710435
8.
Alford
,
J. S.
,
1975
, “
Nature, Causes and Prevention of Labyrinth Air Seal Failures
,”
AIAA J. Aircraft
,
12
(
4
), pp.
313
318
. 10.2514/3.44449
9.
Lewis
,
D.
,
Platt
,
C.
, and
Smith
,
E.
,
1979
, “
Aeroelastic Instability in F100 Labyrinth Air Seals
,”
AIAA J. Aircraft
,
16
(
7
), pp.
484
490
. 10.2514/3.58552
10.
Vega
,
A.
, and
Corral
,
R.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part II: Physical Interpretation
,”
ASME J. Turbomach.
,
140
(
10
), p.
121007
. 10.1115/1.4041377
11.
Corral
,
R.
,
Greco
,
M.
, and
Vega
,
A.
,
2019
, “
Tip-Shroud Labyrinth Seal Impact on the Flutter Stability of Turbine Rotor Blades
,”
ASME J. Turbomach.
,
141
(
10
), p.
101006
. 10.1115/1.4043962
12.
Corral
,
R.
,
Vega
,
A.
, and
Greco
,
M.
,
2020
, “
Conceptual Flutter Analysis of Stepped Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
071001
. 10.1115/1.4046419
13.
Miura
,
T.
, and
Sakai
,
N.
,
2019
, “
Numerical and Experimental Studies of Labyrinth Seal Aeroelstic Instability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111005
. 10.1115/1.4044353
14.
Alford
,
J.
,
1964
, “
Protection of Labyrinth Seals From Flexural Vibration
,”
ASME J. Eng. Gas Turbines Power
,
86
(
2
), pp.
141
147
. 10.1115/1.3677564
15.
Alford
,
J.
,
1967
, “
Protecting Turbomachinery From Unstable and Oscillatory Flows
,”
ASME J. Eng. Gas Turbines Power
,
89
(
4
), pp.
513
527
. 10.1115/1.3616719
16.
Ehrich
,
F.
,
1968
, “
Aeroelastic Instability in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
90
(
4
), pp.
369
374
. 10.1115/1.3609221
17.
Abbot
,
D. R.
,
1981
, “
Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention
,”
ASME J. Eng. Gas Turbines Power
,
103
(
2
), pp.
308
312
. 10.1115/1.3230721
18.
Zhuang
,
Q.
,
2012
, “
Parametric Study on the Aeroelastic Stability of Rotor Seals
,”
Master’s thesis
,
Royal Institute of Technology
,
Stockholm, Sweden
.
19.
Hirano
,
T.
,
Guo
,
Z.
, and
Kirk
,
R. G.
,
2005
, “
Application of Computational Fluid Dynamics Analysis for Rotating Machinery-Part II: Labyrinth Seal Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
820
826
. 10.1115/1.1808426
20.
Mare
,
L. D.
,
Imregun
,
M.
,
Green
,
J.
, and
Sayma
,
A. I.
,
2010
, “
A Numerical Study on Labyrinth Seal Flutter
,”
ASME J. Tribology
,
132
(
2
), pp.
022201
022207
. 10.1115/1.3204774
21.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
AIAA J. Propulsion Power
,
32
(
2
), pp.
325
336
. 10.2514/1.B35572
22.
Corral
,
R.
, and
Vega
,
A.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency. Part I: Theoretical Support
,”
ASME J. Turbomach.
,
139
(
3
), p.
0310009
. 10.1115/1.4034976
23.
Vega
,
A.
, and
Corral
,
R.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part II: Numerical Experiments
,”
ASME J. Turbomach.
,
128
(
2
), p.
021005
. 10.1115/1.4031777
24.
Vega
,
A.
, and
Corral
,
R.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency. Part II: Numerical Verification
,”
ASME J. Turbomach.
,
139
(
3
), p.
031010
. 10.1115/1.4034978
25.
Corral
,
R.
,
Escribano
,
A.
,
Gisbert
,
F.
,
Serrano
,
A.
, and
Vasco
,
C.
,
2003
, “
Validation of a Linear Multigrid Accelerated Unstructured Navier-Stokes Solver for the Computation of Turbine Blades on Hybrid Grids
,”
9th AIAA/CEAS Aeroacoustics Conference
,
Hilton Head, SC
,
May 12–14
,
AIAA Paper No. 2003–3326
.
26.
Burgos
,
M.
, and
Chia
,
J.
,
2009
, “
Rapid Meshing of Turbomachinery Rows Using Semi-Unstructured Multi-Block Conformal Grids
,”
Eng. Comput.
,
26
(
4
), pp.
351
363
. 10.1007/s00366-009-0169-7
You do not currently have access to this content.