Abstract

Previous studies have indicated a potential for improving the performance of a turbine center frame (TCF) duct by optimizing the clocking position between the high-pressure turbine (HPT) vanes and TCF struts. To assess the impact of clocking on the performance, a new test vehicle with a clockable ratio of HPT vanes to TCF struts, consisting of an HPT stage (aerodynamically representative of the second-stage HPT engine), a TCF duct with nonturning struts, and a first-stage low-pressure turbine vane, was designed and tested in the transonic test turbine facility (TTTF) at Graz University of Technology. This article quantifies the performance impact of clocking and describes the mechanisms causing TCF flow field changes, leveraging both experimental and numerical data. Other areas in the TCF duct impacted by the choice of the HPT vane circumferential position including the strength of unsteady HPT-TCF interaction modes, TCF strut incidence changes, and carryover effects to the first low-pressure turbine (LPT) vane are additionally highlighted. Five-hole-probe (5HP) area traverses and kielhead-rake traverses were used to assess the flow field at the TCF exit and to calculate the pressure loss. The flow field at the TCF exit shows significant differences depending on the circumferential position of the HPT vane. A relative performance benefit of 5% was achieved. A series of unsteady RANS simulations were performed to support the measured results, understand, and characterize the relevant loss mechanisms. The observed performance improvement was related to interaction between the HPT secondary-flow structures and the TCF struts. The impact of the HPT vane clocking on the unsteady flow field downstream of the TCF was investigated using fast-response aerodynamic pressure probe (FRAPP) area traverses and analyzed by means of modal decomposition. In this way, the individual azimuthal modes were ranked by their amplitude, and a dependency of the clocking position was observed and quantified.

References

1.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Progress Aeros. Sci.
,
47
(
4
), pp.
249
279
.
2.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows—Part I: The Influence of Turbine Purge Flow Rates
,”
ASME J. Turbomach.
,
140
(
6
), pp.
105
115
.
3.
Jenny
,
P.
,
Abhari
,
R.
,
Rose
,
M.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
Low-Pressure Turbine End Wall Design Optimisation and Experimental Verification in the Presence of Purge Flow
,” ISABE, Paper No. 1717.
4.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.
5.
Huber
,
F.
,
Johnson
,
P. D.
,
Sharma
,
O. P.
,
Staubach
,
J.
, and
Gaddis
,
S. W.
,
1996
, “
Performance Improvement Through Indexing of Turbine Airfoils: Part 1—Experimental Investigation
,”
ASME J. Turbomach.
,
118
(
4
), pp.
630
635
.
6.
Eulitz
,
F.
,
Engel
,
K.
, and
Gebing
,
H.
,
1996
, “
Numeriacal Investigation of the Clocking Effects in a Multistage Turbine
,”
Proceedings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition.
,
Birmingham, UK
,
June 10–13
.
7.
Arnone
,
A.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Schipani
,
C.
, and
Spano
,
E.
,
2002
, “
Numerical Investigation of Airfoil Clocking in a Three-Stage Low-Pressure Turbine
,”
ASME J. Turbomach.
,
124
(
1
), pp.
61
68
.
8.
Reinmöller
,
U.
,
Stephan
,
B.
,
Schmidt
,
S.
, and
Niehuis
,
R.
,
2002
, “
Clocking Effects in a 1.5 Stage Axial Turbine-Steady and Unsteady Experimental Investigations Supported by Numerical Simulations
,”
ASME J. Turbomach.
,
124
(
1
), pp.
52
60
.
9.
Davis
,
R.
,
Yao
,
J.
,
Clark
,
J.
,
Stetson
,
G.
,
Alonso
,
J.
,
Jameson
,
A.
,
Haldeman
,
C.
, and
Dunn
,
M.
,
2004
, “
Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components
,”
Int. J. Rot. Mach.
,
10
(
6
), pp.
906130
.
10.
Gadea
,
J.
,
Dénos
,
R.
,
Paniagua
,
G.
,
Billiard
,
N.
, and
Sieverding
,
C. H.
,
2004
, “
Effect of Clocking on the Second Stator Pressure Field of a One and a Half Stage Transonic Turbine
,”
Proceedings of the ASME Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
.
11.
Schennach
,
O.
,
Pecnik
,
R.
,
Paradiso
,
B.
,
Göttlich
,
E.
,
Marn
,
A.
, and
Woisetschlaeger
,
J.
,
2008
, “
The Effect of Vane Clocking on the Unsteady Flow Field in a One-and-a-Half Stage Transonic Turbine
,”
ASME J. Turbomach.
,
130
(
3
), p.
031022
.
12.
Erhard
,
G.
, and
Gehrer
,
A.
,
2000
, “
Design and Construction of a Transonic Test-Turbine Facility
,”
Proceedings of the ASME Turbo Expo 2000
,
Munich, Germany
,
May 8–11
.
13.
Neumayer
,
F.
,
Kulhanek
,
G.
,
Pirker
,
H.
,
Jericha
,
H.
,
Seyr
,
A.
, and
Sanz
,
W.
,
2000
, “
Operational Behavior of a Complex Transonic Test Turbine Facility
,”
Proceedings of the ASME Turbo Expo 2001
,
New Orleans, LA
,
June 4–7
.
14.
Steiner
,
M.
,
Zerobin
,
S.
,
Bauinger
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Development and Commissioning of a Purge Flow System in a Two Spool Test Facility
,”
12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics
,
Stockholm, Sweden
,
Apr. 3–7
.
15.
Faustmann
,
C.
, and
Göttlich
,
E.
,
2014
, “
Aerodynamics and Acoustics of Turning Mid Turbine Frames in a Two-Shaft Test Turbine
,”
Proceedings of the ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
.
16.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
17.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
,
11
(
7
), p.
1036
.
18.
Persico
,
G.
,
Gaetani
,
P.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of New Concept Fast-Response Pressure Probes
,”
Meas. Sci. Technol.
,
16
(
9
), p.
1741
.
19.
Lengani
,
D.
,
Paradiso
,
B.
, and
Marn
,
A.
,
2012
, “
A Method for the Determination of Turbulence Intensity by Means of a Fast Response Pressure Probe and Its Application in a LP Turbine
,”
J. Thermal Sci.
,
21
(
1
), pp.
21
31
.
20.
Zerobin
,
S.
,
Perters
,
A.
,
Marn
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Impact of Purge Flows on the Unsteady Hpt Stator-Rotor Interaction
,
Proceedings of GPPS Forum 18 Global Power and Propulsion Society
, Paper No. GPPS-2018-0026.
21.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,” Pre-1964 SAE Technical Papers, 01,
Technical Paper 620532
.
22.
Lengani
,
D.
,
Selic
,
T.
,
Spataro
,
R.
,
Marn
,
A.
, and
Göttlich
,
E.
,
2012
, “
Analysis of the Unsteady Flow Field in Turbines by Means of Modal Decomposition
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
.
23.
Franke
,
M.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
,
2005
, “
Das dlr-verfahren trace: Moderne simulationstechniken für turbomaschinenströmungen
,”
Deutscher Luft-und Raumfahrtkongress (Friedrichshafen)
.
24.
Nürnberger
,
D.
, and
Greza
,
H.
,
2002
, “
Numerical Investigation of Unsteady Transitional Flows in Turbomachinery Components Based on a RANS Approach.
Flow, Turbulence Combust.
,
69
(
3
), pp.
331
353
.
25.
Röber
,
T.
,
Kozulovic
,
D.
,
Kögeler
,
E.
, and
Nörnberger
,
D.
,
2006
,
Appropriate Turbulence Modelling for Turbomachinery Flows Using a Two-Equation Turbulence Model
,
Springer
,
New York
, pp.
446
454
.
26.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Proceeding of 9th Symposium on Turbulent Shear Flows
,
Kyoto, Japan
,
Aug. 16–18
.
27.
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2016
, “
Experimental Investigation of Turbine Stage Flow Field and Performance at Varying Cavity Purge Rates and Operating Speeds
,”
Proceedings of the ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
.
28.
Sterzinger
,
P.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Dellacasagrande
,
M.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2019
, “
Impact of Varying High- and Low-Pressure Turbine Purge Flows an a Turbine Center Frame and Low-Pressure Turbine System
,”
Proceedings of the ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
.
You do not currently have access to this content.