Abstract

The study focuses on evaluating fully coupled conjugate heat transfer (CHT) simulation in a ribbed cooling passage with a fully developed flow assumption using large eddy simulation (LES) with the immersed boundary method (IBM-LES-CHT). The IBM-LES and the IBM-CHT frameworks are validated by simulating purely convective heat transfer in the ribbed duct, and a laminar boundary layer flow over a 2D flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. It is shown that the time scale disparity between turbulent fluid flow and heat conduction in solid can be overcome by using an artificially high solid thermal diffusivity. While the diffusivity impacts the instantaneous fluctuations in temperature and heat transfer, it has an insignificant effect on the predicted Nusselt number. Comparison between IBM-LES-CHT and iso-flux heat transfer simulations shows that the iso-flux case predicts higher local Nusselt numbers at the back face of the rib. Furthermore, the local Nusselt number augmentation ratio (EF) predicted by IBM-LES-CHT is compared with experiment and another LES conjugate simulation. The present LES calculations predict higher EFs on the leading face of the rib and show a different trend at the trailing face when CHT is activated.

References

1.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
. 10.1115/1.4023826
2.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
32
. 10.1155/2013/275653
3.
Casarsa
,
L.
, and
Arts
,
T.
,
2005
, “
Experimental Investigation of the Aerothermal Performance of a High Blockage Rib-Roughened Cooling Channel
,”
ASME J. Turbomach.
,
127
(
3
), pp.
580
588
. 10.1115/1.1928933
4.
Wang
,
L.
, and
Sundén
,
B.
,
2007
, “
Experimental Investigation of Local Heat Transfer in a Square Duct With Various-Shaped Ribs
,”
Heat Mass Transfer
,
43
(
8
), pp.
759
766
. 10.1007/s00231-006-0190-y
5.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
. 10.1016/0017-9310(88)90235-9
6.
Rallabandi
,
A. P.
,
Alkhamis
,
N.
, and
Han
,
J.-C.
,
2011
, “
Heat Transfer and Pressure Drop Measurements for a Square Channel With 45 Deg Round-Edged Ribs at High Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
3
), p.
031019
. 10.1115/1.4001243
7.
Ghorbani-Tari
,
Z.
,
Wang
,
L.
, and
Sunden
,
B.
,
2013
, “
Effect of Blockage-Ratio on Developing Heat Transfer for a Rectangular Duct With Transverse Ribs
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 3A: Heat Transfer
,
San Antonio, TX
,
June 3–7
.
8.
Keshmiri
,
A.
,
Cotton
,
M. A.
, and
Addad
,
Y.
,
2009
, “
Numerical Simulations of Flow and Heat Transfer Over Rib-Roughened Surfaces
,”
17th Annual Conference of CFD Society of Canada
,
Kanata, Ottawa, Canada
,
May 3–5
.
9.
Ooi
,
A.
,
Iaccarino
,
G.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
2002
, “
Reynolds Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts
,”
Int. J. Heat Fluid Flow
,
23
(
6
), pp.
750
757
. 10.1016/S0142-727X(02)00188-1
10.
Prakash
,
C.
, and
Zerkle
,
R.
,
1995
, “
Prediction of Turbulent Flow and Heat Transfer in a Ribbed Rectangular Duct With and Without Rotation
,”
ASME J. Turbomach.
,
117
(
2
), pp.
255
264
. 10.1115/1.2835654
11.
Ciofalo
,
M.
, and
Collins
,
M. W.
,
1992
, “
Large-Eddy Simulation of Turbulent Flow and Heat Transfer in Plane and Rib-Roughened Channels
,”
Int. J. Numer. Methods Fluids
,
15
(
4
), pp.
453
489
. 10.1002/fld.1650150406
12.
Tafti
,
D. K.
,
He
,
L.
, and
Nagendra
,
K.
,
2014
, “
Large Eddy Simulation for Predicting Turbulent Heat Transfer in Gas Turbines
,”
Philos. Trans. R. Soc., A
,
372
(
2022
), p.
20130322
. 10.1098/rsta.2013.0322
13.
Labbé
,
O.
,
2013
, “
Large-Eddy-Simulation of Flow and Heat Transfer in a Ribbed Duct
,”
Comput. Fluids
,
76
, pp.
23
32
. 10.1016/j.compfluid.2013.01.023
14.
Lohász
,
M.
,
Rambaud
,
P.
, and
Benocci
,
C.
,
2012
, “
LES Simulation of Ribbed Square Duct Flow With FLUENT and Comparison With PIV Data
,”
The 12th International Conference on Fluid Flow Technologies (CMFF'12)
,
Budapest, Hungary
,
Sep. 4–7
.
15.
James
,
T.
, and
Tucker
,
P.
,
2013
, “
Large Eddy Simulation of Turbine Internal Cooling Ducts
,”
Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 8B: Heat Transfer and Thermal Engineering
,
San Diego, CA
,
Nov. 15–21
, p. V08BT09A063.
16.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA-CR-168015, NAS 1.26:168015, EDR-11209.
17.
Hylton
,
L. D.
,
Nirmalan
,
V.
,
Sultanian
,
B. K.
, and
Kaufman
,
R. M.
,
1988
, “
The Effects of Leading Edge and Downstream Turbine Vane Heat Transfer
,”
Final Report General Motors Corp.
,
Indianapolis, IN
, Allison Gas Turbine Division, https://ui.adsabs.harvard.edu/#abs/1988gmc..rept.....H/abstract.
18.
Turner
,
E. R.
,
Wilson
,
M. D.
,
Hylton
,
L. D.
, and
Kaufman
,
R. M.
,
1985
, “
Analytical and Experimental Evaluation of Surface Heat Transfer Distributions with Leading Edge Showerhead Film Cooling
,” Turbine Vane External Heat Transfer – Volume
1
, NASA CR-174827, Allison EDR 11984.
19.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
2000
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
. 10.1115/1.555438
20.
Jung
,
E. Y.
,
Chung
,
H.
,
Choi
,
S. M.
,
Woo
,
T.-K.
, and
Cho
,
H. H.
,
2017
, “
Conjugate Heat Transfer on Full-Coverage Film Cooling With Array Jet Impingements With Various Biot Numbers
,”
Exp. Therm. Fluid. Sci.
,
83
, pp.
1
8
. 10.1016/j.expthermflusci.2016.12.008
21.
Li
,
W.
,
Yang
,
L.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Effect of Thermal Boundary Conditions and Thermal Conductivity on Conjugate Heat Transfer Performance in Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
95
, pp.
579
592
. 10.1016/j.ijheatmasstransfer.2015.12.010
22.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S. S.
,
2011
, “
Conjugate Heat Transfer From a Flat Plate With Shower Head Impinging Jets
,”
ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15, 2012
.
23.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S. S.
,
2014
, “
Conjugate Heat Transfer From an Impingement and Film-Cooled Flat Plate
,”
J. Thermophys. Heat Transfer
,
28
(
4
), pp.
647
666
. 10.2514/1.T4119
24.
Fedrizzi
,
R.
, and
Arts
,
T.
,
2004
, “
Investigation of the Conjugate Convective-Conductive Thermal Behavior of a Rib-Roughened Internal Cooling Channel
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 3: Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
, pp.
45
53
.
25.
Agostini
,
F.
, and
Arts
,
T.
,
2005
, “
Conjugate Heat Transfer Investigation of Rib-Roughened Cooling Channels
,”
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 3: Turbo Expo 2005, Parts A and B
,
Reno, NV
,
June 6–9
, pp.
239
247
.
26.
Cukurel
,
B.
, and
Arts
,
T.
,
2013
, “
Local Heat Transfer Dependency on Thermal Boundary Condition in Ribbed Cooling Channel Geometries
,”
ASME. J. Heat Transfer
,
35
(
10
), p.
101001
. doi.org/10.1115/1.4024494
27.
Cukurel
,
B.
,
Arts
,
T.
, and
Selcan
,
C.
,
2012
, “
Conjugate Heat Transfer Characterization in Cooling Channels
,”
J. Therm. Sci.
,
21
(
3
), pp.
286
294
. 10.1007/s11630-012-0546-1
28.
Radenac
,
E.
,
Gressier
,
J.
, and
Millan
,
P.
,
2014
, “
Methodology of Numerical Coupling for Transient Conjugate Heat Transfer
,”
Comput. Fluids
,
100
, pp.
95
107
. 10.1016/j.compfluid.2014.05.006
29.
Ke
,
Z.
, and
Wang
,
J.
,
2016
, “
Conjugate Heat Transfer Simulations of Pulsed Film Cooling on an Entire Turbine Vane
,”
Appl. Therm. Eng.
,
109
(
A
), pp.
600
609
. 10.1016/j.applthermaleng.2016.08.132
30.
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Evaluation of CFD Simulations of Film Cooling Performance on a Turbine Vane Including Conjugate Heat Transfer Effects
,”
Int. J. Heat Fluid Flow
,
50
, pp.
279
286
. 10.1016/j.ijheatfluidflow.2014.08.010
31.
Williams
,
R. P.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2012
, “
Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 4: Heat Transfer, Parts A and B
,
Copenhagen, Denmark
,
June 11–15
, pp.
1549
1557
.
32.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2009
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
. 10.1016/j.ijthermalsci.2009.04.007
33.
Shih
,
T. I.-P.
,
Chi
,
X.
,
Bryden
,
K. M.
,
Alsup
,
C.
, and
Dennis
,
R. A.
,
2009
, “
Effects of Biot Number on Temperature and Heat-Flux Distributions in a TBC-Coated Flat Plate Cooled by Rib-Enhanced Internal Cooling by Rib-Enhanced Internal Cooling
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B
,
Orlando, FL
,
June 8–12
, pp.
641
655
.
34.
Gomatam Ramachandran
,
S.
, and
Shih
,
T. I.-P.
,
2015
, “
Biot Number Analogy for Design of Experiments in Turbine Cooling
,”
ASME J. Turbomach.
,
137
(
6
), p.
061002
. 10.1115/1.4028327
35.
Iaccarino
,
G.
,
Ooi
,
A.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
2002
, “
Conjugate Heat Transfer Predictions in Two-Dimensional Ribbed Passages
,”
Int. J. Heat Fluid Flow
,
23
(
3
), pp.
340
345
. 10.1016/S0142-727X(02)00181-9
36.
Scholl
,
S.
,
Verstraete
,
T.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2016
, “
Conjugate Heat Transfer of a Rib-Roughened Internal Turbine Blade Cooling Channel Using Large Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
61
(
B
), pp.
650
664
. 10.1016/j.ijheatfluidflow.2016.07.009
37.
Tafti
,
D. K.
,
2010
, “Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries,”
Advances in Computational Fluid Dynamics and Heat Transfer
,
R.
Amano
, and
B.
Sunden
, eds.,
WIT Press
,
Southampton, UK
, pp.
217
264
.
38.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
180
186
. 10.1115/1.3450666
39.
Zhang
,
L. W.
,
Tafti
,
D. K.
,
Najjar
,
F. M.
, and
Balachandar
,
S.
,
1997
, “
Computations of Flow and Heat Transfer in Parallel-Plate Fin Heat Exchangers on the CM-5: Effects of Flow Unsteadiness and Three-Dimensionality
,”
Int. J. Heat Mass Transfer
,
40
(
6
), pp.
1325
1341
. 10.1016/S0017-9310(96)00207-4
40.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Monthly Weather Review
,
91
(
3
), pp.
99
164
. https://journals.ametsoc.org/view/journals/mwre/91/3/1520-0493_1963_091_0099_gcewtp_2_3_co_2.xml
41.
Najjar
,
F. M.
, and
Tafti
,
D. K.
,
1996
, “
Study of Discrete Test Filters and Finite Difference Approximations for the Dynamic Subgrid-Scale Stress Model
,”
Phys. Fluids
,
8
(
4
), pp.
1076
1088
. 10.1063/1.868887
42.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
. 10.1063/1.857955
43.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Sub-Grid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
3
(
11
), pp.
2746
2757
. 10.1063/1.858164
44.
Tafti
,
D. K.
,
2005
, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
92
104
. 10.1016/j.ijheatfluidflow.2004.07.002
45.
Nagendra
,
K.
,
Tafti
,
D. K.
, and
Viswanath
,
K.
,
2014
, “
A New Approach for Conjugate Heat Transfer Problems Using Immersed Boundary Method for Curvilinear Grid Based Solvers
,”
J. Comput. Phys.
,
267
, pp.
225
246
. 10.1016/j.jcp.2014.02.045
46.
Patil
,
S.
, and
Tafti
,
D.
,
2013
, “
Large-Eddy Simulation With Zonal Near Wall Treatment of Flow and Heat Transfer in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
135
(
3
), p.
031006
. 10.1115/1.4006640
47.
He
,
L.
, and
Tafti
,
D.
,
2015
, “
Evaluating the Immersed Boundary Method in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 5A: Heat Transfer
,
Montreal, Quebec, Canada
,
June 15–19
, p.
V05AT11A036
.
48.
Tae
,
K.-O.
,
2019
, “
Strongly-Coupled Conjugate Heat Transfer Investigation of Internal Cooling of Turbine Blades Using the Immersed Boundary Method
,”
M.S. thesis
,
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University
.
49.
York
,
W.
,
2006
, “
A Robust Conjugate Heat Transfer Methodology With Novel Turbulence Modeling Applied to Internally-Cooled Gas Turbine Airfoils
,”
Ph.D. dissertation
,
Mechanical Engineering, Clemson University
.
50.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
. 10.1115/1.4001245
51.
Casarsa
,
L.
, and
Arts
,
T.
,
2002
, “
Aerodynamic Performance Investigation of a Rib Roughened Cooling Channel Flow With High Blockage Ratio
,”
11th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
July 8–11, 2002
,
Lisbon, Portugal
.
52.
Scholl
,
S.
,
Verstraete
,
T.
,
Torress-Garcia
,
J.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2015
, “
Influence of the Thermal Boundary Conditions on the Heat Transfer of a rib-Roughened Cooling Channel Using LES
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
5
), pp.
498
507
. 10.1177/0957650915591907
53.
Cukurel
,
B.
,
Selcan
,
C.
, and
Arts
,
T.
,
2013
, “
Film Cooling Extraction Effects on the Aero-Thermal Characteristics of Rib Roughened Cooling Channel Flow
,”
ASME J. Turbomach.
,
135
(
2
), p.
021016
. 10.1115/1.4007501
54.
Payvar
,
P.
,
1977
, “
Convective Heat Transfer to Laminar Flow Over a Plate of Finite Thickness
,”
Int. J. Heat Mass Transfer
,
20
(
4
), pp.
431
433
. 10.1016/0017-9310(77)90165-X
You do not currently have access to this content.