Abstract

Surface roughness is well known to significantly influence turbine aerodynamics and heat transfer; different studies have been undertaken in the last decades, in order to precisely characterize its effects and pursue a reliable and unified computational fluid dynamics modeling approach. Despite the effort, further research is still required to completely fulfill the goal, due to the complexity of the considered environment, with many other aspects and flow characteristics factoring into the final behavior. In this work, an experimental campaign was carried out to evaluate the heat transfer coefficient on a linear nozzle guide vane geometry. The adopted geometry has been developed and tested, at different inlet turbulence intensity, Reynolds and Mach number, at Von Kármán Institute. The results achieved on a test article with smooth surface were made available. In the present work, the effect of increased turbulence level and surface roughness was taken into account, respectively, using passive grids and conditioning the test sample surface finishing. Experiments were conducted using a transient technique by measuring the surface temperature evolution by IR thermography. The collected results integrate the existing database available in the open literature in order to support development and benchmarking of numerical approaches aimed at a reliable characterization of these aspects.

References

1.
Driest
,
E. R. Van
, and
Blumert
,
C. B.
,
1963
, “
Boundary Layer Transition: Freestream Turbulence and Pressure Gradient Effects
,”
AIAA J.
,
1
(
6
), pp.
1303
1306
. 10.2514/3.1784
2.
Ames
,
F. E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
9
(
1
), pp.
23
30
. 10.1115/1.2841007
3.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane At Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
124
(
1
), pp.
107
118
. 10.1115/1.1424891
4.
Dullenkopf
,
K.
, and
Mayle
,
R. E.
,
1994
, “
An Account of Free-Stream-Turbulence Length Scale on Laminar Heat Transfer
,”
ASME Conference Proceedings (94-GT-174)
.
ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, The Hague, Netherlands
.
5.
Ames
,
F. E.
,
1994
,
Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence
.
NASA Contractor’s Report 4633
.
6.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
1999
, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
,
122
(
2
), pp.
255
262
. 10.1115/1.555442
7.
Choi
,
J.
,
Teng
,
S.
,
Han
,
J. C.
, and
Ladeinde
,
F.
,
2004
, “
Effect of Free-Stream Turbulence on Turbine Blade Heat Transfer and Pressure Coefficients in Low Reynolds Number Flows
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3441
3452
. 10.1016/j.ijheatmasstransfer.2004.01.015
8.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W.-F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
. 10.1115/1.2952381
9.
Varty
,
J. W.
, and
Ames
,
F. E.
,
2016
, “
Experimental Heat Transfer Distributions Over An Aft Loaded Vane with a Large Leading Edge At Very High Turbulence Levels
,”
ASME Conference Proceedings (IMECE2016-67029)
,
ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, AZ
.
10.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Measure. Sci. Technol.
,
11
(
7
), pp.
957
968
. 10.1088/0957-0233/11/7/312
11.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
. 10.1115/1.1643911
12.
Bammert
,
K.
, and
Sandstede
,
H.
,
1990
, “
Measurements of the Boundary Layer Development Along a Turbine Blade With Rough Surfaces
,”
ASME J. Eng. Power
,
102
(
4
), pp.
978
983
.10.1115/1.3230370
13.
Kind
,
R. J.
,
Serjak
,
P. J.
, and
Abbott
,
M. W. P.
,
1998
, “
Measurements and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade
,”
ASME J. Turbomach
,
120
(
1
), pp.
20
27
.10.1115/1.2841383
14.
Zhang
,
Q.
, and
Ligrani
,
P. M.
,
2006
, “
Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity
,”
ASME J. Turbomach.
,
128
(
3
), pp.
536
546
.10.1115/1.2185125
15.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
1998
, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME J. Turbomach.
,
120
(
3
), pp.
522
529
. 10.1115/1.2841749
16.
Bunker
,
R. S.
,
1997
, “
Separated and Combined Effect of Surface Roughness and Turbulence Intensity on Vane Heat Transfer
,”
ASME Conference Proceedings (97-GT-135)
.
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, Orlando, FL
.
17.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer of a Hp Turbine Vane
,”
ASME J. Turbomach.
,
127
(
1
), pp.
200
208
. 10.1115/1.1811101
18.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
. 10.1115/1.1400115
19.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
. 10.1115/1.3066315
20.
Arts
,
T.
, and
Lambert de Rouvroit
,
M. L.
,
1992
, “
Aero-thermal Performance of a Two-dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
. 10.1115/1.2927978
21.
Gourdain
,
Nicolas
,
Gicquel
,
Laurent Y. M.
, and
Collado
,
Elena
,
2012
, “
Comparison of Rans and Les for the Heat Transfer Prediction in Turbine Guide Vane
,”
J. Propulsion Power
,
28
(
2
), pp.
423
433
. 10.2514/1.B34314
22.
Hoarau
,
J.-Ch.
,
Cinnella
,
P.
, and
Gloerfelt
,
X.
,
2019
, “
Large Eddy Simulation of Turbomachinery Flows Using a High-order Implicit Residual Smoothing Scheme
,”
Computers & Fluids
,
198
, p.
104395
, ISSN 0045–7930. 10.1016/j.compfluid.2019.104395
23.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Heat Fluid Flow
,
8
(
2
), pp.
83
92
. 10.1016/0142-727X(87)90001-4
24.
ASME. Measurement Uncertainty
.
Instrument and Apparatus, Vol. ANSI/ASME PTC 19.1-1985 of Performance Test Code, 1985
.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
17
.
26.
Mart
,
S. R
,
McClain
,
S. T.
, and
Wright
,
L. M.
,
2012
, “
Turbulent Convection From Deterministic Roughness Distributions With Varying Thermal Conductivities
,”
ASME J. Turbomach.
,
134
(
5
), p.
051030
. 10.1115/1.4004751
27.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfert of Turbomachinary
,
John Wiley and Sons Inc.
,
Hoboken, NJ
.
28.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-scale Freestream Turbulence Generation in a Transonic Turbine Cascade
,”
ASME Conference Proceedings (GT-2002-30523)
.
ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, Netherlands
.
29.
O’Dowd
,
D. O. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
. 10.1115/1.4001236
30.
Collins
,
M.
,
Chana
,
K.
, and
Povey
,
T.
,
2016
, “
Improved Methodologies for Time-Resolved Heat Transfer Measurements, Demonstrated on An Unshrouded Transonic Turbine Casing
,”
ASME J. Turbomach.
,
138
(
11
), p.
111007
. 10.1115/1.4033267
31.
Vogel
,
G.
,
Graf
,
A. B. A.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2003
, “
A Novel Transient Heater-foil Technique for Liquid Crystal Experiments on Film-Cooled Surfaces
,”
ASME J. Turbomach.
,
125
(
3
), pp.
529
537
. 10.1115/1.1578501
32.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
,
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
. North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development.
33.
Thwaites
,
B.
,
1949
, “
Approximate Calculation of the Laminar Boundary Layer
,”
Aeronaut. Q.
,
1
(
3
), pp.
245
280
. 10.1017/S0001925900000184
34.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
,
2007
, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
542
550
.10.1115/1.2515555
35.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowsky
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
. 10.1115/1.4032435
36.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F.
,
2019
, “
Large Eddy Simulation of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
,”
ASME J. Turbomach.
,
141
(
4
), p.
041004
. 10.1115/1.4041599
37.
Turner
,
A. B.
,
Tarada
,
F. H. A.
, and
Bayley
,
F. J.
,
1985
, “
Effects of Surface Roughness on Heat Transfer to Gas Turbine Blades
,”
AGARD Heat Transfer and Cooling in Gas Turbines
,
9
, pp.
1
10
.
You do not currently have access to this content.