Abstract

Within the context of leading-edge film cooling in a high-pressure turbine vane, the present study is a step forward toward modeling showerhead performance for a baseline geometry (namely four staggered rows of cylindrical holes) at engine-like conditions, starting from a previous investigation, at low-speed flow (exit isentropic Mach number of Ma2is = 0.2), low inlet turbulence intensity of Tu1 = 1.6%, and density ratio of DR ∼ 1. Those operating conditions, dictated by experimental constraints, were essential to validate results from delayed detached-eddy simulation (DDES) against off-the-wall measurements of velocity, vorticity, and turbulent fluctuations, for the coolant-to-mainstream blowing ratio of BR = 3 (momentum flux ratio of I = 9). Here, the potential of DDES is exploited to predict the aerothermal features of the flow in the leading-edge region in the presence of a larger density ratio (DR ∼ 1.5) and turbulent mainstream (Tu1 = 13%), while matching either BR or I. The experimental database contains surface measurements of film cooling adiabatic effectiveness (η), obtained by using the pressure-sensitive paint (PSP) technique. DDES predictions of η were computed using the species transport model (i.e., mass transfer), for comparison against the conventional thermal method, based on creating a temperature differential between the mainstream and the coolant (i.e., heat transfer). The simulated film cooling performance was found to depend on the method used, thus suggesting that other parameters than DR, BR, I, and Tu1 should be taken into account when the goal is matching engine-like conditions.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Sparrow
,
E. M.
,
Abraham
,
J. P.
, and
Gorman
,
J. M.
,
2017
,
Advances in Heat Transfer
, Vol.
49
,
Academic Press
,
St. Paul, MN
.
3.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
. 10.1115/1.3450752
4.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
. 10.1115/1.2927894
5.
Johnson
,
B.
,
Zhang
,
K.
,
Tian
,
W.
, and
Hu
,
H.
,
2013
, “
An Experimental Study of Film Cooling Effectiveness by Using PIV and PSP Techniques
,”
Proc. of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Grapevine, TX
,
Jan. 7–10
, pp.
1
15
, AIAA 2013-0603.
6.
Baldauf
,
S. A.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film Cooling Effectiveness From Thermographic Measurements at Engine Like Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
. 10.1115/1.1504443
7.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
. 10.1115/1.1343457
8.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2015
, “
Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique
,”
J. Thermophys. Heat Transfer
,
29
(
4
), pp.
775
784
. 10.2514/1.T4518
9.
Anderson
,
J. B.
,
Boyd
,
E. J.
, and
Bogard
,
D. G.
,
2015
, “
Experimental Investigation of Coolant-to-Mainstream Scaling Parameters With Cylindrical and Shaped Film Cooling Holes
,”
Proceedings of the ASME Turbo Expo 2015
,
Montreal, Canada
,
June 15–19
,
ASME
Paper No. GT2015-43072
, p.
V05BT12A033
. 10.1115/gt2015-43072
10.
Liu
,
K.
,
Yang
,
S. F.
, and
Je-Chin Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling With Compound-Angle Shaped Holes
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, pp.
1559
1569
,
ASME
Paper No. GT2012-69117
. 10.1115/gt2012-69117
11.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
. 10.1115/1.4003025
12.
Vinton
,
K. R.
,
Watson
,
T. B.
,
Wright
,
L. M.
,
Crites
,
D. C.
, Morris, M. C., and Riahi, A.
,
2017
, “
Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of Round and Shaped Holes on a Flat Plate
,”
ASME J. Turbomach.
,
139
(
4
), p.
041003
. 10.1115/1.4035044
13.
Ekkad
,
S.
, and
Han
,
J. C.
,
2015
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
Front. Heat Mass Transfer
,
6
(
8
), pp.
1
14
. 10.5098/hmt.6.8
14.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
. 10.1115/1.4025225
15.
Cutbirth
,
J.
, and
Bogard
,
D.
,
2003
, “
Effects of Coolant Density Ratio on Film Cooling Performance on a Vane
,”
Proceedings of the ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
, pp.
385
394
,
ASME
Paper No. GT2003–38582
. 10.1115/gt2003-38582
16.
Andrei
,
L.
,
Facchini
,
B.
,
Caciolli
,
G.
,
Picchi
,
Tarchi
,
L.
,
D'Ercole
,
M.
,
Innocenti
,
L.
, and
Russo
,
A.
,
2014
, “
Performance Improvement of a Heavy Duty GT: Adiabatic Effectiveness Measurements on First Stage Vanes in Representative Engine Conditions
,”
Proceedings of the ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, p.
V05BT13A055
.
ASME Paper No. GT2014-26894
. 10.1115/gt2014-26894
17.
Wiese
,
C. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2018
, “
Experimental Evaluation of Thermal and Mass Transfer Techniques to Measure Adiabatic Effectiveness With Various Coolant to Freestream Property Ratios
,”
ASME J. Turbomach.
,
140
(
2
), p.
021001
. 10.1115/1.4038177
18.
Wiese
,
C. J.
,
Bryant
,
C. E.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2018
, “
Influence of Scaling Parameters and Gas Properties on Overall Effectiveness on a Leading Edge Showerhead
,”
ASME J. Turbomach.
,
140
(
11
), p.
111007
. 10.1115/1.4041292
19.
Luque
,
S.
,
Jones
,
T. V.
, and
Povey
,
T.
,
2017
, “
Effects of Coolant Density, Specific Heat Capacity, and Biot Number on Turbine Vane Cooling Effectiveness
,”
ASME J. Turbomach.
,
139
(
11
), p.
111005
. 10.1115/1.4037029
20.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Freestream Turbulence Intensity on Film Cooling jet Structure and Surface Effectiveness Using PIV and PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041023
. 10.1115/1.4003051
21.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
. 10.1115/1.4032736
22.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
. 10.1115/1.4006287
23.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,”
Proceedings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
,
Birmingham, UK
,
June 10–13
, p.
V004T09A049
,
ASME
Paper No. 96-GT-462
. 10.1115/96-gt-462
24.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
,
1997
, “
Investigation of Various Parametric Influences on Leading Edge Film Cooling
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
, p.
V003T09A058
,
ASME
Paper No. 97-GT-296
. 10.1115/97-gt-296
25.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
. 10.1115/1.2928023
26.
Ames
,
F. E.
,
1998
, “
Aspects of Vane Film Cooling with High Turbulence: Part II—Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
120
(
4
), pp.
777
784
. 10.1115/1.2841789
27.
Polanka
,
M. D.
,
Witteveld
,
V. C.
, and
Bogard
,
D. G.
,
1999
, “
Film Cooling Effectiveness in the Showerhead Region of a Gas Turbine Vane: Part I—Stagnation Region and Near-Pressure Side
,”
Proc. of ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
, p.
V003T01A022
,
ASME
Paper No. 99-GT-048
. 10.1115/99-gt-048
28.
Witteveld
,
V. C.
,
Polanka
,
M. D.
, and
Bogard
,
D. G.
,
1999
, “
Film Cooling Effectiveness in the Showerhead Region of a Gas Turbine Vane: Part II—Stagnation Region and Near-Suction Side
,”
Proc. of ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
, p.
V003T01A023
,
ASME
Paper No. 99-GT-049
. 10.1115/99-gt-049
29.
Sakai
,
E.
, and
Takahashi
,
T.
,
2017
, “
Numerical Study on Effects of Density Ratio on Film Cooling Flow Structure and Film Cooling Effectiveness
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, p.
V05AT12A001
,
ASME
Paper No. GT2017-63168
. 10.1115/gt2017-63168
30.
Stratton
,
Z. T.
, and
Shih
,
T. I.
,
2018
, “
Effects of Density and Blowing Ratios on the Turbulent Structure and Effectiveness of Film Cooling
,”
ASME J. Turbomach.
,
140
(
10
), p.
101007
. 10.1115/1.4041218
31.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows With Variable Density Jets
,”
Flow Turbul. Combust.
,
80
(
1
), pp.
119
132
. 10.1007/s10494-007-9080-8
32.
Funazaki
,
K. I.
,
Kawabata
,
H.
, and
Okita
,
Y.
,
2012
, “
Free-Stream Turbulence Effects on Leading Edge Film Cooling
,”
Int. J. Gas Turbine Propul. Power Syst.
,
4
(
1
), pp.
43
50
. 10.38036/jgpp.4.1_43
33.
Funazaki
,
K. I.
,
Kawabata
,
H.
,
Takahashi
,
D.
, and
Okita
,
Y.
,
2012
, “
Experimental and Numerical Studies on Leading Edge Film Cooling Performance: Effects of Hole Exit Shape and Freestream Turbulence
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, pp.
1223
1233
,
ASME
Paper No. GT2012-68217
. 10.1115/gt2012-68217
34.
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2014
, “
Computational Fluid Dynamics Evaluations of Unconventional Film Cooling Scaling Parameters on a Simulated Turbine Blade Leading Edge
,”
ASME J. Turbomach.
,
136
(
10
), p.
101006
. 10.1115/1.4028001
35.
Rutledge
,
J. L.
,
Polanka
,
M. D.
, and
Greiner
,
N. J.
,
2017
, “
Computational Fluid Dynamics Evaluations of Film Cooling Flow Scaling Between Engine and Experimental Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021004
. 10.1115/1.4034557
36.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2017
, “
Comparison of RANS and Detached Eddy Simulation Modeling Against Measurements of Leading Edge Film Cooling on a First-Stage Vane
,”
ASME J. Turbomach.
,
139
(
5
), p.
051005
. 10.1115/1.4035161
37.
Ravelli
,
S.
,
Casarsa
,
L.
, and
Barigozzi
,
G.
,
2019
, “
Numerical Evaluation of Showerhead Film Cooling Aerothermal Performance on a First-Stage Vane
,”
Int. J. Therm. Sci.
,
141
, pp.
171
186
. 10.1016/j.ijthermalsci.2019.03.038
38.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2019
, “
Numerical Evaluation of Heat/Mass Transfer Analogy for Leading Edge Showerhead Film Cooling on a First-Stage Vane
,”
Int. J. Heat Mass Transfer
,
129
, pp.
842
854
. 10.1016/j.ijheatmasstransfer.2018.10.034
39.
Barigozzi
,
G.
,
Casarsa
,
L.
,
Pagnacco
,
F.
, and
Rouina
,
S.
,
2019
, “
Experimental Investigation of the Interaction Between Showerhead Coolant Jets and Main Flow
,”
Exp. Therm. Fluid Sci.
,
104
, pp.
43
58
. 10.1016/j.expthermflusci.2019.02.014
40.
Abdeh
,
H.
,
Barigozzi
,
G.
,
Ravelli
,
S.
, and
Rouina
,
S.
,
2020
, “
A Parametric Investigation of Vane Showerhead Film Cooling by Pressure-Sensitive Paint Technique
,”
ASME. J. Turbomach.
,
142
(
3
), p.
031007
. 10.1115/1.4045875
41.
Han
,
J. C.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
21
. 10.5098/hmt.v1.1.3001
42.
Polanka
,
M. D.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Three Component Velocity Field Measurements in the Stagnation Region of a Film Cooled Turbine Vane
,”
ASME J. Turbomach.
,
124
(
3
), pp.
445
452
. 10.1115/1.1459733
43.
Fischer
,
J. P.
,
Rutledge
,
J. L.
,
McNamara
,
L. J.
, and
Polanka
,
M. D.
,
2019
, “
Scaling Flat Plate, Low Temperature Adiabatic Effectiveness Results Using the Advective Capacity Ratio
,”
Proceedings. of ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
,
ASME
Paper No. GT2019-90997
. 10.1115/gt2019-90997
You do not currently have access to this content.