Abstract

A particular turbine cascade design is presented with the goal of providing a basis for high quality investigations of endwall flow under high-speed conditions with unsteady inflow. The key feature of the design is an integrated two-part flat plate serving as a cascade endwall at part-span, which enables a variation of the inlet endwall boundary layer conditions. The new design is applied to the T106A low pressure turbine cascade for endwall flow investigations in the High-Speed Cascade Wind Tunnel of the Institute of Jet Propulsion at the Bundeswehr University Munich. Measurements are conducted under realistic flow conditions (M2th = 0.59, Re2th = 2 · 105) in three cases of varying endwall boundary layer conditions with and without periodically incoming wakes. The endwall boundary layer is characterized by 1D-CTA measurements upstream of the blade passage. Secondary flow is evaluated by five-hole-probe measurements in the turbine exit flow. A strong similarity is found between the time-averaged effects of unsteady inflow conditions and the effects of changing inlet endwall boundary layer conditions regarding the attenuation of secondary flow. Furthermore, the experimental investigations show that all design goals for the improved T106A cascade are met.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
2.
Cui
,
J.
, and
Tucker
,
P. G.
,
2016
, “
Numerical Study of Purge and Secondary Flows in a Low Pressure Turbine
,”
Proceedings of the ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-56789. 10.1115/GT2016-56789
3.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
(
1
), pp.
133
141
. 10.1115/1.2835631
4.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovis
,
I.
,
Sjolander
,
S. A.
,
Clarka
,
J. P.
, and
Sondergaard
,
R.
,
2013
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design
,”
ASME J. Turbomach.
,
135
(
6
), p.
061007
. 10.1115/1.4024796
5.
Stotz
,
S.
,
Niehuis
,
R.
, and
Guendogdu
,
Y.
,
2016
, “
Experimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow
,”
Proceedings of the ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-56287. 10.1115/GT2016-56287
6.
Zhang
,
X. F.
, and
Hodson
,
H.
,
2010
, “
Effects of Reynolds Number and Freestream Turbulence Intensity on the Unsteady Bounday Layer Development on An Ultra-High-Lift Low Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
132
(
1
), p.
011016
. 10.1115/1.3106031
7.
Ciorciari
,
R.
,
Schubert
,
T.
, and
Niehuis
,
R.
,
2018
, “
Numerical Investigation of Secondary Flow and Loss Development in a Low Pressure Turbine Cascade with Divergent Endwalls
,”
J. Turbomach. Propuls. Power 2018
,
3
(
1
), p.
5
. 10.3390/ijtpp3010005
8.
Kirik
,
I.
, and
Niehuis
,
R.
,
2015
, “
Comparing the Effect of Unsteady Wakes on Parallel and Divergent Endwalls in a LP Turbine Cascade (T106A-EIZ and T106D-EIZ)
,”
Proceedings of the 11th International Gas Turbine Congress 2015
,
Tokyo, Japan
,
Nov. 15–20
, Paper No. IGTC2015-137.
9.
Ciorciari
,
R.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
Effects of Unsteady Wakes on Secondary Flows in the Linear T106 Turbine Cascade
,”
ASME J. Turbomach.
,
136
(
9
), p.
091010
. 10.1115/1.4027374
10.
Koschichow
,
D.
,
Fröhlich
,
J.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
DNS of the Flow Near the Endwall in a Linear Low Pressure Turbine Cascade with Periodically Passing Wakes
,”
Proceedings of the ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, Paper No. GT2014-25071. 10.1115/GT2014-25071
11.
Volino
,
R.
,
Galvin
,
C. D.
, and
Ibrahim
,
M.
,
2013
, “
Effects of Periodic Unsteadiness on Secondary Flows in High Pressure Turbines
,”
Proceedings of the ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
, GT2013-95881. 10.1115/GT2013-95881
12.
Volino
,
R.
,
2014
, “
Effects on Endwall Boundary Layer Thickness and Blade Tip Geometry on Flow through High Pressure Turbine Passages
,”
Proceedings of the ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, GT2014-27013. 10.1115/GT2014-27013
13.
Kirik
,
I.
, and
Niehuis
,
R.
,
2016
, “
Influence of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade
,”
Proceedings of the ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, GT2016-56350. 10.1115/GT2016-56350
14.
Kiock
,
R.
,
Laskowski
,
G.
, and
Hoheisel
,
H.
,
1982
, “
Die Erzeugung höherer Turbulenzgrade in der Messstrecke des Hochgeschwindigkeits-Gitterwindkanals: Braunschweig, zur Simulation turbomaschinenähnlicher Bedingungen
,”
DFVLR-FB
,
82
(
25
).
15.
Niehuis
,
R.
, and
Bitter
,
M.
,
2021
, “
The High-Speed Cascade Wind Tunnel at the Bundeswehr University Munich after a Major Revision and Upgrade
,”
Proceedings of the 14th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Gdansk, Poland
,
April 12–16, Paper No. ETC2021-647 (to be published)
.
16.
Acton
,
P.
, and
Fottner
,
L.
,
1996
, “
The Generation of Instationary Flow Conditions in the High-Speed Cascade Wind Tunnel of the German Armed Forces University Munich
,”
Proceedings of the 13th Symposium on Measuring Techniques for Transonic and Supersonic Flow in Cascades and Turbomachines
,
Zürich, Switzerland
,
Sept. 5–6
, Session 1(1).
17.
Chemnitz
,
S.
, and
Niehuis
,
R.
,
2020
, “
A Comparison of Turbulence Levels From PIV and CTA Downstream of a Low-Pressure Turbine Cascade At High-Speed Flow Conditions
,”
ASME J. Turbomach.
,
142
(
7
), p.
071008
. 10.1115/1.4046272
18.
Bohn
,
D.
,
1977
,
Untersuchung zweier verschiedener axialer Überschallverdichterstufen unter besonderer Berücksichtigung der Wechselwirkungen zwischen Lauf- und Leitrad
,
PhD Thesis, RWTH Aachen
,
Aachen, Germany
.
19.
Vinnemeier
,
F.
,
Simon
,
L.
, and
Koschel
,
W.
,
1990
, “
Correction Method for the Head Geometry Influence of a Five-Hole Pressure Probe on the Measurement Results
,”
tm - Technisches Messen
,
57
(
7/8
), pp.
704315
. 10.1524/teme.1990.57.jg.296
20.
Gomes
,
R.
,
Kurz
,
J.
, and
Niehuis
,
R.
,
2018
, “
Development and Implementation of a Technique for Fast Five-Hole Probe Measurements Downstream of a Linear Cascade
,”
J. Turbomach. Propuls. Power.
,
3
(
1
), p.
6
. 10.3390/ijtpp3010006
21.
Chemnitz
,
S.
, and
Niehuis
,
R.
,
2020
, “
Accurate Boundary Layer Measurements using Hot-Wire Anemometry – Improvements and Error Analysis
,”
Proceedings of the 18th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Online,
Nov. 23–26
, Paper No. ISROMAC2019-00030.
22.
Hutchins
,
N.
, and
Choi
,
K.-S.
,
2002
, “
Accurate Measurements of Local Skin Friction Coefficient Using Hot-Wire Anemometry
,”
Progress Aeros. Sci.
,
38
(
4–5
), pp.
421
446
. 10.1016/S0376-0421(02)00027-1
23.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
,
1999
, “
Correction of Hot-Wire Measurements in the Near-Wall Region
,”
Experiments in Fluids
,
26
(
5
), pp.
475
477
. 10.1007/s003480050312
24.
Wilcox
,
D. C.
,
2004
,
Turbulence Modeling for CFD (forth Printing)
,
DCW Industries
,
USA
.
25.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2005
, “
Transition Modeling for General CFD Applications in Aeronautics
,”
Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit 2005
,
Reno, NV
,
Jan. 10–13
, Paper No. 2005-522. 10.2514/6.2005-522
26.
Narasimha
,
R.
, and
Prasad
,
S. N.
,
1994
, “
Leading Edge Shape for Flat Plate Boundary Layer Studies
,”
Exp. Fluids
,
17
(
5
), pp.
358
360
. 10.1007/BF01874418
You do not currently have access to this content.