Abstract

The present paper focuses on the resilience of 3-hole pressure probes to hot sand fouling in turbomachinery environments. These probes are utilized inside jet engine hot sections for diagnostics and flow characterization. Ingestion of sand and other particulates pose a significant risk to hot section components and measurement devices in gas turbine engines. In this study, wedge, cylindrical, and trapezoidal probes were exposed to hot section turbine aerothermal conditions of 1050 °C and 65–70 m/s flow velocity and fouled with 0–5 µm Arizona Road Dust (ARD). Sand accumulated more rapidly on the surface of the trapezoidal and cylindrical probe geometries than on the surface of the wedge probe geometry. Probe calibrations following sand fouling were performed in an ambient temperature, open air, calibration jet at Mach 0.3 and 0.5. Calibration curves using nondimensional coefficients were used to assess probe error in yaw angle due to sand fouling. Probe error was based on each probe’s ability to accurately measure flow direction over a flow angle range of [−10 deg, 10 deg]. On average, the probes displayed greater error at Mach 0.5 than Mach 0.3. The wedge probe performed the best after sand fouling and displayed a maximum error of less than ±2 deg in yaw angle. In contrast, the cylindrical probe performed the worst after sand fouling and displayed maximum errors of more than ±8 deg in yaw angle. Transient response did not change notably with sand fouling.

References

1.
Brouckaert
,
J. F.
,
2007
, “
Fast Response Aerodynamic Probes For Measurements in Turbomachines
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
(
6
), pp.
811
813
. 10.1243/09576509JPE460
2.
Sieverding
,
C. H.
,
Arts
,
T.
,
Dénos
,
R.
, and
Brouckaert
,
J.-F.
,
2000
, “
Measurement Techniques For Unsteady Flows in Turbomachines
,”
Exp. Fluids
,
28
(
4
), pp.
285
321
. 10.1007/s003480050390
3.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
. DOI 10.1115/1.4035921
4.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M.
,
Nieto
,
A.
,
Bravo
,
L.
,
Barnett
,
B.
,
Pepi
,
M.
,
Swab
,
J.
,
Pegg
,
R. T.
,
Rowe
,
C.
,
Zhu
,
D.
, and
Kerner
,
K.
,
2017
, “
Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades
,”
Volume 2D: Turbomachinery
, pp.
1
2
, V02DT48A009.
5.
Dunn
,
M. G.
,
Padova
,
C.
, and
Adams
,
R. M.
,
1987
, “
Operation of Gas Turbine Engines in Dust-Laden Environments
,” ADP006197, Buffalo, NY.
6.
Hamed
,
A.
, and
Tabakoff
,
W. C.
, and
Wenglarz
,
R. V.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
. 10.2514/1.18462
7.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomac.
,
135
(
5
), p.
151001
.
8.
Boulanger
,
A.
,
Hutchinson
,
J.
,
Ng
,
W.
,
Ekkad
,
S.
,
Keefe
,
M.
,
Xu
,
W.
,
Barker
,
B.
, and
Hsu
,
K.
,
2017
, “
Experimental Based Empirical Model of the Initial Onset of Sand Deposits on Hastelloy-X From 1000 °C to 1100 °C Using Particle Tracking
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Volume 2D: Turbomachinery
,
Charlotte, NC
,
June 26–30
, pp.
1
11
.
9.
Boulanger
,
A.
,
Patel
,
H.
,
Hutchinson
,
J.
,
DeShong
,
W.
,
Xu
,
W.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2016
, “
Preliminary Experimental Investigation of Initial Onset of Sand Deposition in the Turbine Section of Gas Turbines
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Volume 1: Aircraft Engine; Fans and Blowers; Marine
,
Seoul, South Korea
,
June 13–17
, pp.
1
11
.
10.
Barker
,
B.
,
Hsu
,
K.
,
Varney
,
B.
,
Boulanger
,
A.
,
Hutchinson
,
J.
, and
Ng
,
W.
,
2017
, “
An Experiment-Based Sticking Model for Heated Sand
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Volume 2D: Turbomachinery
,
Charlotte, NC
,
June 26–30
, pp.
1
11
.
11.
Boulanger
,
A.
,
Hutchinson
,
J.
,
Ng
,
W. F.
,
Ekkad
,
S.
,
Keefe
,
M.
,
Xu
,
W.
,
Barker
,
B.
, and
Hsu
,
K.
,
2017
, “
Experimental Investigation of the Onset of Sand Deposits on Hastelloy-X Between 1,000 °C and 1,100 °C
,”
Aeronaut. J.
,
121
(
1242
), pp.
1187
1199
. 10.1017/aer.2017.48
12.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
Time-Resolved Flow Measurements with Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
1036
1054
. 10.1088/0957-0233/11/7/318
13.
Rotary Table Spec Overview
,” Velmex Inc., Bloomfield, NY, https://www.velmex.com/Downloads/Spec_Sheets/Rotary Tables Spec Overview.pdf
14.
Kueppers
,
U.
,
Cimarelli
,
C.
,
Hess
,
K. U.
,
Taddeucci
,
J.
,
Wadsworth
,
F. B.
, and
Dingwell
,
D. B.
,
2014
, “
The Thermal Stability of Eyjafjallajökull Ash Versus Turbine Ingestion Test Sands
,”
J. Appl. Volcanol.
,
3
(
1
), p.
4
. 10.1186/2191-5040-3-4
15.
16.
Bowen
,
C. P.
,
Libertowski
,
N. D.
, and
Bons
,
J. P.
,
2019
, “
Modeling Deposition in Turbine Cooling Passages With Temperature
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071010
. doi.org/10.1115/1.4042287
17.
How to Choose a Microscope
,” Microscope Parts and Functions. https://www.amscope.com/how-to-choose-microscope, Accessed June 20, 2018.
18.
Nothnagle
,
P.
,
Chambers
W.
,
Davidson
,
M.
, “Introduction to Stereomicroscopy,” Nikon's MicroscopyU. https://www.microscopyu.com/techniques/stereomicroscopy/introduction-to-stereomicroscopy, Accessed June 29, 2018.
19.
Stereo Microscopes
,”
10 Fun Facts about the History of the Microscope
. https://www.microscopeworld.com/c-429-stereo-microscopes.aspx, Accessed June 20, 2018.
20.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
,
Rueden
,
C.
,
Saalfeld
,
S.
,
Schmid
,
B.
,
Tinevez
,
J.
,
White
,
D.
,
Hartenstein
,
V.
,
Eliceiri
,
K.
,
Tomancak
,
P.
, and
Cardona
,
A.
,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
. 10.1038/nmeth.2019
21.
Güven
,
O.
,
Farell
,
C.
, and
Patel
,
V.
,
1980
, “
Surface-roughness Effects on the Mean Flow Past Circular Cylinders
,”
ASME J. Fluids Mech.
,
98
(
4
), pp.
673
701
. 10.1017/S0022112080000341
22.
Ribeiro
,
J. L. D.
,
1991
, “
Effects of Surface Roughness on the Two-Dimensional Flow Past Circular Cylinders I: Mean Forces and Pressures
,”
J. Wind Eng. Ind. Aerodyn.
,
37
(
3
), pp.
299
309
. 10.1016/0167-6105(91)90014-N
23.
Davenport
,
W.J.
,
2003
, “
Flow Past a Circular Cylinder
,”
Virginia Tech University
, Accessed Oct. 9, 2003. www.aoe.vt.edu
24.
Sumner
,
D.
,
2002
, “
A Comparison of Data-Reduction Methods for a Seven-Hole Probe
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
523
527
. 10.1115/1.1455033
25.
Turner
,
E.
,
Bogdan
,
M.
,
O’Connell
,
T.
, and
Ng
,
W.
,
2018
, “
Measurement Drift in 3-Hole Yaw Pressure Probes From 5 Micron Sand Fouling at 1050 °C
,”
M.S. thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
26.
Tropea
,
C.
,
2016
,
Springer Handbook of Experimental Fluid Mechanics: With DVD-ROM, 1240 Figures and 123 Tables
, Vol. 1,
Springer
,
Berlin
, pp.
228
222
.
You do not currently have access to this content.