Abstract

One consequence of increasing efficiency of gas turbine combustors is higher temperatures within the combustor. Management of larger heat load has been advanced to protect the combustor wall and turbines, and among those are thermal barrier coatings (TBCs). Historically, both the flame and TBCs have received a simplified radiation treatment using effective absorptivities and emissivities. In this study, non-gray radiation is compared with gray and black radiation by combining three-dimensional Monte Carlo Ray Tracing solution of non-gray flames in a model gas turbine combustor to one-dimensional energy balance within combustor liners. A recent large eddy simulation of a gas turbine combustor is analyzed, where both gray and non-gray models are exercised. A two-band spectral model is employed for the TBC, where a translucent band and an opaque band are identified. A line-by-line treatment for gas-phase radiation is adopted, and the incident radiative energy on the combustor wall is collected using the MCRT solver, where the fraction of radiative energy within the translucent band is collected and compared with those obtained from the blackbody assumption. The temperature along the multilayered combustor wall is computed, and parametric comparison is conducted. The effects of the nongray flame radiation are more prominent at elevated pressures than at atmospheric pressure. The gray model is found to over-predict the TBC temperature, which leads to a difference of approximately 150 K in the prediction of peak temperature on the hot side of the TBC.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
.
2.
Flamant
,
Q.
, and
Clarke
,
D. R.
,
2019
, “
Opportunities for Minimizing Radiative Heat Transfer in Future Thermal and Environmental Barrier Coatings
,”
Scr. Mater
,
173
, pp.
1
6
. 10.1016/j.scriptamat.2019.07.041
3.
Miller
,
R. A.
,
1997
, “
Thermal Barrier Coatings for Aircraft Engines: History and Directions
,”
J. Therm. Spray Techn.
,
6
(
1
), pp.
35
42
. 10.1007/BF02646310
4.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
. 10.1126/science.1068609
5.
Li
,
L.
, and
Clarke
,
D. R.
,
2008
, “
Effect of CMAS Infiltration on Radiative Transport Through An EB-PVD Thermal Barrier Coating
,”
Int. J. Appl. Ceram. Technol.
,
5
(
3
), pp.
278
288
. 10.1111/j.1744-7402.2008.02225.x
6.
Siegel
,
R.
,
1997
, “
Green’s Function to Determine Temperature Distribution in a Semitransparent Thermal Barrier Coating
,”
J. Thermophys. Heat Trans.
,
11
(
2
), pp.
315
318
. 10.2514/2.6242
7.
Siegel
,
R.
, and
Spuckler
,
C. M.
,
1994
, “
Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers
,”
Int. J. Heat Mass Tran.
,
37
(
Supplement 1
), pp.
403
413
. 10.1016/0017-9310(94)90040-X
8.
Siegel
,
R.
, and
Spuckler
,
C.
,
1998
, “
Analysis of Thermal Radiation Effects on Temperatures in Turbine Engine Thermal Barrier Coatings
,”
Mater. Sci. Eng.
,
245
(
2
), pp.
150
159
. 10.1016/S0921-5093(97)00845-9
9.
Siegel
,
R.
,
1996
, “
Internal Radiation Effects in Zirconia Thermal Barrier Coatings
,”
J. Thermophys. Heat Trans.
,
10
(
4
), pp.
707
709
. 10.2514/3.851
10.
Saygin
,
Y.
,
Can Kocaman
,
O.
, and
Uslu
,
S.
,
2016
, “
Effect of Radiation on Gas Turbine Combustor Liner Temperature with Conjugate Heat Transfer (CHT) Methodology
,”
52nd AIAA/SAE/ASEE Joint Propulsion Conference
,
Salt Lake City, UT
.
11.
Sharma
,
N.
,
2015
, “
Heat Transfer Analysis for Preliminary Design of Gas Turbine Combustion Chamber Liners
,” PhD thesis,
Univeristy of Toronto
.
12.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
,
1967
,
Radiative Transfer
, 1st ed.,
McGraw-Hill
.
13.
Lefebvre
,
A. H.
,
1984
, “
Flame Radiation in Gas Turbine Combustion Chambers
,”
Int. J. Heat Mass Tran.
,
27
(
9
), pp.
1493
1510
. 10.1016/0017-9310(84)90262-X
14.
Claus
,
R. W.
,
Wear
,
J. D.
, and
Liebert
,
C. H.
,
1979
, “
Ceramic coating effect on Liner metal temperatures of film-cooled annular combustor
,”
Technical Report, NASA Technical Paper 1323
.
15.
Matarazzo
,
S.
, and
Laget
,
H.
,
2011
, “
Modelling of the Heat Transfer in a Gas Turbine Liner Combustor
,”
7th Mediterranean Combustion Symposium
,
Sardinia, Italy
.
16.
Kim
,
K.
,
Yun
,
N.
,
Jeon
,
Y.
,
Lee
,
D.
,
Cho
,
H.
, and
Kang
,
S.
,
2010
, “
Conjugated Heat Transfer and Temperature Distributions in a Gas Turbine Combustion Liner Under Base-Load Operation
,”
J. Mech. Sci. Technol.
,
24
(
9
), pp.
1939
1946
. 10.1007/s12206-010-0625-8
17.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic Press
,
Oxford UK
.
18.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media
,”
Int. J. Heat Mass. Transf.
,
50
(
19–20
), pp.
3877
3889
. 10.1016/j.ijheatmasstransfer.2007.02.018
19.
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
A Hybrid Wavenumber Selection Scheme for Line-By-Line Photon Monte Carlo Simulations in High-temperature Gases
,”
J. Heat Transf.
,
135
(
8
), p.
084501
.
20.
Tien
,
C.
,
1969
, “
Thermal Radiation Properties of Gases
,”
Adv. Heat Transf
,
5
, pp.
253
324
.
21.
Eldrigde
,
J. I.
,
Spuckler
,
C. M.
,
Street
,
K. W.
, and
Markham
,
J. R.
,
2002
, “Infrared Radiative Properties of Yttria-Stabilized Zirconia Thermal Barrier Coatings,”
Ceram. Eng. Sci. Proc.
, Vol.
23
,
H.-T.
Lin
, and
M.
Singh
, eds.,
Wiley-Blackwell
,
Hoboken, NJ
, pp.
417
430
.
22.
Wang
,
L.
,
Eldridge
,
J. I.
, and
Guo
,
S. M.
,
2014
, “
Comparison of Different Models for the Determination of the Absorption and Scattering Coefficients of Thermal Barrier Coatings
,”
Acta. Mater.
,
64
, pp.
402
410
. 10.1016/j.actamat.2013.10.053
23.
Spuckler
,
C. M.
,
2008
, “Effect of Scattering on the Heat Transfer Behavior of a Typical Semitransparent TBC Material on a Substrate,”
Ceram. Eng. Sci. Proc.
, Vol.
26
,
D.
Zhu
, and
K.
Plucknett
, eds.,
Wiley-Blackwell
,
Hoboken, NJ
, pp.
47
54
.
24.
Siegel
,
R.
, and
Spuckler
,
C.
,
1995
, “
Temperature Distribution in Semitransparent Coatings - A Special Two-Flux Solution
”,
Technical Report, NASA-TM-11893, Cleveland
.
25.
Richmond
,
J.
,
1963
, “
Relation of Emittance to Other Optical Properties
,”
J. Res. Nbs. C. Eng. Inst.
,
67C
(
3
), pp.
217
226
.
26.
Eddington
,
A.
,
1959
,
The Internal Constitution of the Stars
,
Dover Publications
,
New York
.
27.
Siegel
,
R.
, and
Spuckler
,
C. M.
,
1993
, “
Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions
,”
J. Thermophys. Heat Transf.
,
7
(
4
), pp.
624
630
. 10.2514/3.470
28.
Siegel
,
R.
, and
Howell
,
J.
,
2001
,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor & Francis
,
New York
.
29.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2015
,
Heat Transfer: Fundamentals and Application
, 5th ed.,
McGraw-Hill
.
30.
Tang
,
K.
, and
Brewster
,
M.
,
1999
, “
Analysis of Molecular Gas Radiation: Real Gas Property Effects
,”
J. Thermophys. Heat Trans.
,
13
(
4
), pp.
460
466
. 10.2514/2.6484
31.
Rothman
,
L. S.
,
Gamache
,
R. R.
,
Tipping
,
R. H.
,
Rinsland
,
C. P.
,
Smith
,
M. A.
,
Benner
,
D. C.
,
Devi
,
V. M.
,
Flaud
,
J. M.
,
Camy-Peyret
,
C.
,
Perrin
,
A.
,
Goldman
,
A.
,
Massie
,
S. T.
,
Brown
,
L. R.
, and
Toth
,
R. A.
,
1992
, “
The HITRAN Molecular Database: Editions of 1991 and 1992
,”
J. Quant. Spectrosc. Radiat. Transf.
,
48
(
5–6
), pp.
469
507
. 10.1016/0022-4073(92)90115-K
32.
Ren
,
T.
, and
Modest
,
M. F.
,
2018
, “
Line-by-Line Random-Number Database for Monte Carlo Simulations of Radiation in Combustion System
,”
J. Heat Transf.
,
141
(
2
), p.
022701
. 10.1115/1.4041803
33.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transf.
,
111
(
15
), pp.
2139
2150
. 10.1016/j.jqsrt.2010.05.001
34.
Zhang
,
P.
,
Park
,
J.-W.
,
Wu
,
B.
, and
Zhao
,
X.
,
2020
, “
Large Eddy Simulation/Thickened Flame Model Simulations of a Lean Partially Premixed Gas Turbine Model Combustor
,”
Combust. Theory Model.
Under review
.
35.
James
,
S.
,
Anand
,
M.
,
Razdan
,
M.
, and
Pope
,
S.
,
2001
, “
In Situ Detailed Chemistry Calculations in Combustor Flow Analyses
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
747
756
. 10.1115/1.1384878
36.
Siegel
,
R.
, and
Spuckler
,
C. M.
,
1994
, “
Effects of Refractive Index and Diffuse Or Specular Boundaries on Radiating Isothermal Layer
,”
J. Heat Transf.
,
116
(
3
), pp.
787
790
. 10.1115/1.2910943
You do not currently have access to this content.