Abstract

Modern gas turbines are subjected to very high thermal loading. This leads to a need for aggressive cooling to protect components from damage. Endwalls are particularly challenging to cool due to a complex system of secondary flows near them that wash and disrupt the protective coolant films. This highly three-dimensional flow not only affects but is also affected by the momentum of film cooling flows, whether injected just upstream of the passage to intentionally cool the endwall or as combustor cooling flows injected further upstream in the engine. This complex interaction between the different cooling flows and passage aerodynamics has been recently studied in a first stage nozzle guide vane. The present paper presents a detailed study on the sensitivity of aero-thermal interactions to endwall film cooling mass flow to mainstream flow ratio. The test section represents a first stage nozzle guide vane with a contoured endwall and endwall film cooling injected just upstream of it. The test section also includes an engine-representative combustor–turbine interface geometry with combustor cooling flows injected at a constant rate. The approach flow conditions represent flow exiting a low-NOx combustor. Adiabatic surface thermal measurements and in-passage velocity and thermal field measurements are presented and discussed. The results show the dynamics of passage vortex suppression and the increase of impingement vortex strength as MFR changes. The effects of these changes of secondary flows on coolant distribution are presented.

References

References
1.
Sedney
,
R.
, and
Kitchens
,
C. W.
Jr.
,
1975
, “
The Structure of Three-Dimensional Separated Flows in Obstacle, Boundary Layer Interactions
,” AGARD-CP-168 on Flow Separation, https://apps.dtic.mil/sti/citations/ADA011254
2.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
J. Heat Trans.
,
106
(
2
), pp.
260
267
. 10.1115/1.3246667
3.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turb. Power
,
99
(
1
), pp.
21
28
. 10.1115/1.3446247
4.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
. 10.1115/1.2841006
5.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls—Part 1: Aerodynamics
,”
Proceedings of ASME Turbo Expo 2020
, Online,
Sept. 21–25
, GT2020-15926.
6.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls—Part 2: Thermal Measurements
,”
Proceedings of ASME Turbo Expo 2020
, Online,
Sep 21–25
, GT2020-15076.
7.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
J. Heat Trans.
,
96
(
4
), pp.
524
529
. 10.1115/1.3450239
8.
Goldman
,
L. J.
, and
McLallin
,
K. L.
,
1977
, “
Effect of Endwall Cooling on Secondary Flows in Turbine Stator Vanes
,” AGARD, CPP-214, https://ntrs.nasa.gov/search.jsp?R=19770049387
9.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Joselyn
,
H. D.
,
1980
, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turb. Power
,
102
(
1
), pp.
81
87
. 10.1115/1.3230238
10.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
. 10.1115/1.4004817
11.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part I—Flowfield Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Munich, Germany
,
May 8–11
, p. V003T01A007.
12.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Flowfield Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Munich, Germany
,
May 8–11
, p. V003T01A008.
13.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2012
, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage, and Assembly Features
,”
ASME J. Turbomach.
,
135
(
1
), p.
011002
. 10.1115/1.4006419
14.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
. 10.1115/1.1561811
15.
Colban
,
W. F.
,
Lethander
,
A. T.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
203
209
. 10.1115/1.1561812
16.
Saxena
,
R.
,
Alqefl
,
M. H.
,
Liu
,
Z.
,
Moon
,
H.-K.
,
Zhang
,
L.
, and
Simon
,
T. W.
,
2016
, “
Contoured Endwall Flow and Heat Transfer Experiments with Combustor Coolant and Gap Leakage Flows for a Turbine Nozzle Guide Vane
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Volume 5C: Heat Transfer
,
Seoul, South Korea
,
June 13–17
, p. V05CT19A013.
17.
Alqefl
,
M. H.
,
Kim
,
Y. W.
,
Moon
,
H.-K.
,
Zhang
,
L.
, and
Simon
,
T. W.
,
2018
, “
Aerodynamic Measurements and Analysis in a First Stage Nozzle Guide Vane Passage with Combustor Liner Cooling, Slot Film Cooling and Endwall Contouring
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 2B: Turbomachinery
,
Oslo, Norway
,
June 11–15
, p. V02BT41A022.
18.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High Pressure NGV Endwall Cooling Systems
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 5C: Heat Transfer
,
Charlotte, NC
,
June 26–30
, p. V05CT19A017.
19.
Erickson
,
R. D.
,
2010
, “
Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade
,”
M.S. Thesis
,
University of Minnesota
, http://hdl.handle.net/11299/90852
20.
Ames
,
F. E.
,
1996
, “
Experimental Study of Vane Heat Transfer and Film Cooling at Elevated Levels of Turbulence
,” NASA Report No. NASA-CR-198525, https://ntrs.nasa.gov/citations/19970001773
21.
Chung
,
J. T.
,
1992
, “
Flow and Heat Transfer Experiments in the Turbine Airfoil/Endwall Region
,”
Ph.D. Thesis
,
University of Minnesota
.
22.
Alqefl
,
M. H.
,
2019
, “
Aero-Thermal Aspects of Endwall Cooling Flows in a Gas Turbine Nozzle Guide Vane
,”
PhD Thesis
,
University of Minnesota
, http://hdl.handle.net/11299/202115
23.
Alqefl
,
M. H.
,
Nawathe
,
K.
,
Chen
,
P.
,
Zhu
,
R.
, and
Simon
,
T. W.
,
2019
, “
A Multi-Plenum Superposition Method for Scalar Transport with Application to Endwall Film Cooling
,”
Proceedings of the International Gas Turbine Congress 2019, IGTC-2019-051
,
Tokyo, Japan
,
Nov. 22–27
.
24.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
You do not currently have access to this content.