Abstract

Turbine passage secondary flows are studied for a large rounded leading edge airfoil geometry considered in the experimental investigation of Varty et al. (“Vane Suction Surface Heat Transfer in Regions of Secondary Flows: The Influence of Turbulence Level, Reynolds Number, and the Endwall Boundary Condition,” ASME J. Turbomach., 140(2), p. 021010) using high resolution large eddy simulation. The complex nature of secondary flow formation and evolution are affected by the approach boundary layer characteristics, components of pressure gradients tangent and normal to the passage flow, surface curvature, and inflow turbulence. This paper presents a detailed description of the secondary flows and heat transfer in a linear vane cascade at exit chord Reynolds number of 5 × 105 at low and high inflow turbulence. Initial flow turning at the leading edge of the inlet boundary layer leads to a pair of counter-rotating flow circulation in each half of the cross plane that drives the evolution of the pressure side and suction side of the near-wall vortices such as the horseshoe and leading edge corner vortex. The passage vortex for the current large leading edge vane is formed by the amplification of the initially formed circulation closer to the pressure side (PPC) which strengthens and merges with other vortex systems while moving towards the suction side. The predicted suction surface heat transfer shows good agreement with the measurements and properly captures the augmented heat transfer due to the formation and lateral spreading of the secondary flows towards the vane midspan downstream of the vane passage. Effects of various components of the secondary flows on the endwall and vane heat transfer are discussed in detail.

References

1.
Chung
,
J. T.
,
Simon
,
T. W.
, and
Buddhavarapu
,
J.
,
1991
, “
Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,” ASME Turbo Expo, Paper No. 91-GT-45.
2.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
3.
Langston
,
L. S.
,
2006
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N Y Acad. Sci.
,
934
(
1
), pp.
11
26
.
4.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
5.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
6.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
J. Eng. Power
,
102
(
2
), pp.
257
267
.
7.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.
8.
Giel
,
P. W.
,
Boyle
,
R. J.
, and
Bunker
,
R. S.
,
2004
, “
Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
126
(
1
), pp.
110
121
.
9.
Han
,
S.
, and
Goldstein
,
R. J.
,
2007
, “
Heat Transfer Study in a Linear Turbine Cascade Using a Thermal Boundary Layer Measurement Technique
,”
ASME J. Heat Transfer
,
129
(
10
), pp.
1384
1394
.
10.
Goldstein
,
R. J.
,
Wang
,
H. P.
, and
Jabbari
,
M. Y.
,
1995
, “
Darryl E. Metzger Memorial Session Paper: The Influence of Secondary Flows Near the Endwall and Boundary Layer Disturbance on Convective Transport From a Turbine Blade
,”
ASME J. Turbomach.
,
117
(
4
), pp.
657
665
.
11.
Varty
,
J. W.
,
Soma
,
L. W.
,
Ames
,
F. E.
, and
Acharya
,
S.
,
2017
, “
Vane Suction Surface Heat Transfer in Regions of Secondary Flows: The Influence of Turbulence Level, Reynolds Number, and the Endwall Boundary Condition
,”
ASME J. Turbomach.
,
140
(
2
), p.
021010
.
12.
Giel
,
P. W.
,
Van Fossen
,
G. J.
,
Boyle
,
R. J.
,
Thurman
,
D. R.
, and
Civinskas
,
K. C.
,
1999
, “
Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade
,” ASME Turbo Expo, Paper No. 99-GT-125.
13.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
,
2007
, “
Numerical Heat Transfer Predictions and Mass/Heat Transfer Measurements in a Linear Turbine Cascade
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
771
778
.
14.
Papa
,
F.
,
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2017
, “
Modeling and Measurements of Heat/Mass Transfer in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
9
), p.
091002
.
15.
Lynch
,
S.
,
2017
, “
Three-Dimensional Boundary Layer in a Turbine Blade Passage
,”
J. Propul. Power
,
33
(
4
), pp.
954
963
.
16.
Koschichow
,
D.
,
Fröhlich
,
J.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
DNS of the Flow Near the Endwall in a Linear Low Pressure Turbine Cascade With Periodically Passing Wakes
,” ASME Turbo Expo, Paper No. GT2014-25071.
17.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P.
,
2017
, “
Numerical Investigation of Secondary Flows in a High-Lift Low Pressure Turbine
,”
Int. J. Heat Fluid Flow
,
63
, pp.
149
157
.
18.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Large-Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure Turbine Cascade, Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Condition
,”
ASME J. Turbomach.
,
141
(
12
), p.
121005
.
19.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F. E.
,
2018
, “
LES Study of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
,” ASME Turbo Expo, Paper No. GT2018-77135.
20.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F. E.
,
2019
, “
Large Eddy Simulation of Bypass Transition in Vane Passage With Freestream Turbulence
,” ASME Turbo Expo, Paper. No GT2019-91099.
21.
Varty
,
J. W.
, and
Ames
,
F. E.
,
2016
, “
Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels
,” ASME IMECE, Paper No. IMECE2016-67029.
22.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F. E.
,
2019
, “
Large Eddy Simulation of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
,”
ASME J. Turbomach.
,
141
(
4
), p.
041004
.
23.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
,
2003
, “
Effects of Aeroderivative Combustor Turbulence on Endwall Heat Transfer Distributions Acquired in a Linear Vane Cascade
,”
ASME J. Turbomach.
,
125
(
2
), pp.
210
220
.
24.
Schlatter
,
P.
,
Örlü
,
R.
,
Li
,
Q.
,
Brethouwer
,
G.
,
Fransson
,
J. H. M.
,
Johansson
,
A. V.
,
Alfredsson
,
P. H.
, and
Henningson
,
D. S.
,
2009
, “
Turbulent Boundary Layers Up To Reθ = 2500 Studied Through Simulation and Experiment
,”
Phys. Fluids
,
21
(
5
), p.
051702
.
25.
Jarrin
,
N.
,
2008
, “
Synthetic Inflow Boundary Conditions for the Numerical Simulation of Turbulence
,”
Ph.D. thesis
,
The University of Manchester
,
Manchester
.
26.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
J. Eng. Power
,
99
(
1
), pp.
21
28
.
27.
Baker
,
C. J.
,
1979
, “
The Laminar Horseshoe Vortex
,”
J. Fluid Mech.
,
95
(
2
), pp.
347
367
.
You do not currently have access to this content.