Abstract

For the reliable operation of modern gas turbines, thermal barrier coatings (TBCs) need to withstand a wide range of ambient conditions resulting from impurities in inlet air or fuels. When analyzing the deposition of detrimental hot gas constituents, previous efforts largely focus on the investigation of solid and molten deposit interaction with TBCs. Recent literature and observations in gas turbines indicate that not only liquids can penetrate porous TBCs, but the deposition from gas phase inside of pores and cracks is also an aspect of TBC degradation. To investigate this vapor deposition process, a diffusion model has been coupled with a thermodynamic equilibrium solver. The diffusion model calculates vapor transport of trace elements through pores and gaps in the TBC, where the thermodynamic equilibrium solver calculates local thermodynamic equilibria to predict whether deposition takes place. In this work, the model is applied to discuss the deposition properties of calcium. In recent literature, calcium has—in some cases—been reported to deposit inside of TBCs as pure anhydrite (CaSO4). An actual anhydrite finding in the TBC of a stationary gas turbine blade was reproduced applying the introduced model. The vapor deposition is shown to occur within and on top of the TBC, depending on several factors, such as pressure, temperatures, calcium-to-silicon ratio, and calcium-to-sulfur ratio. The successful alignment of conditions in real engines with model results will allow addressing the increasing demand for more fuel- and operational flexibility of current and future gas turbines.

References

1.
Stott
,
F. H.
,
de Wet
,
D. J.
, and
Taylor
,
R.
,
1994
, “
Degradation of Thermal-Barrier Coatings at Very High Temperatures
,”
MRS Bull.
,
19
(
10
), pp.
46
49
.
2.
Smialek
,
J. L.
,
Archer
,
F. A.
, and
Garlick
,
R. G.
,
1994
, “
Turbine Airfoil Degradation in the Persian Gulf War
,”
JOM
,
46
(
12
), pp.
39
41
.
3.
Borom
,
M. P.
,
Johnson
,
C. A.
, and
Peluso
,
L. A.
,
1996
, “
Role of Environment Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
86–87
(
Part 1
), pp.
116
126
.
4.
Chen
,
X.
,
2006
, “
Calcium–Magnesium–Alumina–Silicate (CMAS) Delamination Mechanisms in EB-PVD Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
200
(
11
), pp.
3418
3427
.
5.
Krämer
,
S.
,
Faulhaber
,
S.
,
Chambers
,
M.
,
Clarke
,
D. R.
,
Levi
,
C. G.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2008
, “
Mechanisms of Cracking and Delamination Within Thick Thermal Barrier Systems in Aero-engines Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Penetration
,”
Mater. Sci. Eng. A
,
490
(
1–2
), pp.
26
35
.
6.
Braue
,
W.
,
2009
, “
Environmental Stability of the YSZ Layer and the YSZ/TGO Interface of an In-service EB-PVD Coated High-Pressure Turbine Blade
,”
J. Mater. Sci.
,
44
(
7
), pp.
1664
1675
.
7.
Braue
,
W.
,
Mechnich
,
P.
, and
Peters
,
P. W. M.
,
2011
, “
The CaSO4 Phase in Fully Infiltrated Electron-Beam Physical Vapour Deposited Yttria Stabilized Zirconia Top Coats From Engine Hardware
,”
Mater. High Temp.
,
28
(
4
), pp.
315
323
.
8.
Braue
,
W.
,
Mechnich
,
P.
, and
Green
,
D. J.
,
2011
, “
Recession of an EB-PVDYSZ Coated Turbine Blade by CaSO4 and Fe, Ti-Rich CMAS-Type Deposits
,”
J. Am. Ceram. Soc.
,
94
(
12
), pp.
4483
4489
.
9.
Witz
,
G.
,
Shklover
,
V.
,
Steurer
,
W.
,
Bachegowda
,
S.
, and
Bossmann
,
H.-P.
,
2015
, “
High-Temperature Interaction of Yttria Stabilized Zirconia Coatings With CaO–MgO–Al2O3–SiO2 (CMAS) Deposits
,”
Surf. Coat. Technol.
,
265
, pp.
244
249
.
10.
Tolpygo
,
V.
,
2017
, “
Vapor-Phase CMAS-Induced Degradation of Adhesion of Thermal Barrier Coatings
,”
Oxid. Met.
,
88
(
1–2
), pp.
87
96
.
11.
Lutz
,
B. S.
,
Jackson
,
R. W.
,
Abdul-Jabbar
,
N. M.
,
Tolpygo
,
V.
, and
Levi
,
C. G.
,
2017
, “
Water Vapor Effects on the CMAS Degradation of Thermal Barrier Coatings
,”
Oxid. Met.
,
88
(
1–2
), pp.
73
85
.
12.
Cussler
,
E. L.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press, Cambridge
,
New York
.
13.
Koukkari
,
P.
,
Penttilä
,
K.
,
Hack
,
K.
, and
Petersen
,
S.
,
2000
, “CHEMSHEET—An Efficient Worksheet Tool for Thermodynamic Process Simulation,”
Microstructures, Mechanical Properties and Processes – Computer Simulation and Modelling
, Vol.
3
,
Y.
Bréchet
, ed.,
Wiley‐VCH
,
Weinheim, Germany
, pp.
323
330
.
14.
ChemSheet v1.89.
VTT Chemical Technology & GTT-Technologies
,
Espoo, Finland & Herzogenrath, Germany
.
15.
Scientific Group Thermodata Europe
,
2015
,
SGTE Pure Substances Database 2015
,
Scientific Group Thermodata Europe
,
Saint Sulpice, France
.
16.
Hack
,
K.
ed.,
2008
,
The SGTE Casebook: Thermodynamics at Work
,
Woodhead Publishing Limited, CRC Press LLC
,
Boca Raton, FL
.
17.
Lienhard
,
I. V.
,
John
,
H.
,
Lienhard
,
V.
, and
John
,
H.
,
2019
,
A Heat Transfer Textbook
, 5th ed.,
Pergamon, Cambridge, MA
.
18.
Fox
,
A. C.
, and
Clyne
,
T. W.
,
2004
, “
Oxygen Transport by Gas Permeation Through the Zirconia Layer in Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
184
(
2–3
), pp.
311
321
.
19.
Golosnoy
,
I. O.
,
Paul
,
S.
, and
Clyne
,
T. W.
,
2008
, “
Modelling of Gas Permeation Through Ceramic Coatings Produced by Thermal Spraying
,”
Acta Mater.
,
56
(
4
), pp.
874
883
.
20.
Zhang
,
C.
,
Li
,
W.-Y.
,
Planche
,
M.-P.
,
Li
,
C.-X.
,
Liao
,
H.
,
Li
,
C.-J.
, and
Coddet
,
C.
,
2008
, “
Study on Gas Permeation Behaviour Through Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Coating
,”
Surf. Coat. Technol.
,
202
(
20
), pp.
5055
5061
.
21.
Arai
,
M.
, and
Suidzu
,
T.
,
2013
, “
Porous Ceramic Coating for Transpiration Cooling of Gas Turbine Blade
,”
J. Therm. Spray Technol.
,
22
(
5
), pp.
690
698
.
22.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O’Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
23.
Fairbanks
,
D. F.
, and
Wilke
,
C. R.
,
1950
, “
Diffusion Coefficients in Multicomponent Gas Mixtures
,”
Ind. Eng. Chem.
,
42
(
3
), pp.
471
475
.
24.
Ashton
,
A. F.
, and
Hayhurst
,
A. N.
,
1976
, “
Flame Photometric Determinations of Diffusion Coefficients. Part 5.—Results for Calcium Hydroxide, Strontium Hydroxide, Barium Hydroxide and Copper
,”
J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases
,
72
, p.
208
.
25.
Svehla
,
R. A.
,
1962
, “
Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures
.” Technical Report No. R-132. NASA Lewis Research Center, Cleveland, OH, https://ntrs.nasa.gov/search.jsp?R=19630012982
26.
Pollard
,
W. G.
, and
Present
,
R. D.
,
1948
, “
On Gaseous Self-diffusion in Long Capillary Tubes
,”
Phys. Rev.
,
73
(
7
), pp.
762
774
.
27.
Cunningham
,
R. E.
, and
Williams
,
R. J. J.
,
1980
,
Diffusion in Gases and Porous Media
,
Springer Science+Business Media
,
New York
.
28.
Epstein
,
N.
,
1989
, “
On Tortuosity and the Tortuosity Factor in Flow and Diffusion Through Porous Media
,”
Chem. Eng. Sci.
,
44
(
3
), pp.
777
779
.
29.
Pisani
,
L.
,
2011
, “
Simple Expression for the Tortuosity of Porous Media
,”
Transp. Porous Media
,
88
(
2
), pp.
193
203
.
30.
Weissberg
,
H. L.
,
1963
, “
Effective Diffusion Coefficient in Porous Media
,”
J. Appl. Phys.
,
34
(
9
), pp.
2636
2639
.
31.
Kulkarni
,
A. A.
,
Goland
,
A.
,
Herman
,
H.
,
Allen
,
A. J.
,
Ilavsky
,
J.
,
Long
,
G. G.
,
Johnson
,
C. A.
, and
Ruud
,
J. A.
,
2004
, “
Microstructure-Property Correlations in Industrial Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
87
(
7
), pp.
1294
1300
.
32.
2019
,
MATLAB R2019b
,
The MathWorks Inc.
,
Natick, MA
.
33.
van Donkelaar
,
A.
,
Martin
,
R. V.
,
Brauer
,
M.
,
Kahn
,
R.
,
Levy
,
R.
,
Verduzco
,
C.
, and
Villeneuve
,
P. J.
,
2010
, “
Global Estimates of Ambient Fine Particulate Matter Concentrations From Satellite-Based Aerosol Optical Depth: Development and Application
,”
Environ. Health Perspect.
,
118
(
6
), pp.
847
855
.
34.
Jaenicke
,
R.
,
1993
, “Chapter 1 Tropospheric Aerosols,”
International Geophysics Series
, Vol.
54
,
P. V.
Hobbs
, ed.,
Academic Press
,
New York and London
, pp.
1
31
.
35.
Wilcox
,
M.
,
Baldwin
,
R.
,
Garcia-Hernandez
,
A.
, and
Brun
,
K.
,
2010
,
Guideline for Gas Turbine Inlet Air Filtration Systems
, 1st ed,
Southwest Research Institute; Gas Machinery Research Council
,
San Antonio, TX
.
36.
Levi
,
C. G.
,
Hutchinson
,
J. W.
,
Vidal-Sétif
,
M.-H.
, and
Johnson
,
C. A.
,
2012
, “
Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits
,”
MRS Bull.
,
37
(
10
), pp.
932
941
.
37.
D18 Committee
. “
Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry
.” ASTM D4404.
38.
Diamond
,
S.
,
2007
, “Physical and Chemical Characteristics of Cement Composites,”
Durability of Concrete and Cement Composites
,
C. L.
Page
, and
M. M.
Page
, eds.,
Elsevier
,
New York
, pp.
10
44
.
39.
Diamond
,
S.
,
2000
, “
Mercury Porosimetry
,”
Cem. Concr. Res.
,
30
(
10
), pp.
1517
1525
.
40.
Evans
,
H. T.
,
1979
, “
The Thermal Expansion of Anhydrite to 1000 C
,”
Phys. Chem. Miner.
,
4
(
1
), pp.
77
82
.
41.
El-Batsh
,
H.
, and
Haselbacher
,
H.
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,”
Proceedings of the ASME Turbo Expo 2002 Presented at the 2002 ASME Turbo Expo
,
Amsterdam, the Netherlands
,
June 3–6, 2002
, pp.
1035
1043
,
42.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S. M.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
You do not currently have access to this content.