Abstract

Unsteady simulations represent an expensive subset of computational fluid dynamics (CFD) simulations in terms of computational resources. Among the unsteady simulations, the time-periodic cases are of special interest in many applications such as turbomachinery. The special characteristics of these cases allow specific methodologies to improve its periodic convergence behavior, neglecting the physical transient to achieve it. The scope of this paper is focused on these unsteady periodic simulations. In this context, departing from a plain Dual Time-Step methodology, where the standard generic procedure is to converge every physical time-step from the solution of the previous one, the effect of feeding-back the previous period information to restart the convergence of the equivalent time-steps in the new period is assessed in this paper. With that aim, options to alleviate the possible penalties of the procedure are presented, and the parameter set election and boundary conditions optimized to define a complete methodology. Finally, a benchmarking of the defined methodology is performed against the standard plain Dual Time-Step technique and the much more efficient Harmonic Balance methodology. For that comparison, a basic two-dimensional (2D) case and a more realistic 3D compressor, both with harmonic torsion vibration, as well as two rotor–stator configurations, are computed and presented here. The results show that a comparable efficiency to the Harmonic Balance technique is achieved with lower memory requirements, meaning that the performance of the plain Dual Time-Step methodology is greatly improved just by changing small parts of its formulation.

References

1.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid with Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA 10th Computational Fluid Dynamics Conference, AIAA 91-156
,
Honolulu, HI
,
June 24–26
.
2.
Thompson
,
K.
, and
O’Connel
,
M. D.
,
2019
, “
Streamlines Convergence Acceleration for CFD Codes
,”
AIAA Proceedings of the Aviation Forum 2019, Number AIAA-2019-3709
,
Dallas, TX
,
June 17–21
.
3.
Erdos
,
J. J.
,
Alzner
,
E.
, and
Mc Nally
,
W.
,
1977
, “
Numerical Solutions of Periodic Transonic Flow Through a Fan
,”
AIAA J.
,
15
(
11
), pp.
1559
1569
.
4.
Elder
,
R.
,
Woods
,
I.
,
Sunil
,
P.
, and
Holmes
,
W.
,
2013
, “
Investigation of Efficient CFD Methods for the Prediction of Blade Damping
,”
ASME Conference Proceedings, Number GT2013-95005, of Turbo Expo
,
San Diego, CA
,
Nov. 15–21
.
5.
Biesinger
,
T.
,
Cornelius
,
C.
,
Rube
,
C.
,
Schmid
,
G.
,
Braune
,
A.
,
Campregher
,
R.
,
Godin
,
P. G.
, and
Zori
,
L.
,
2010
, “
Unsteady CFD Methods in a Commercial Solver for Turbomachinery Applications
,”
ASME Conference Proceedings, Number GT2010-44021, of Turbo Expo
,
Glasgow, UK
,
June 14–18
.
6.
Contreras
,
J.
,
2019
, “
A Review and Optimization of the Double Passage Methodology
AIAA Proceedings of the Aviation Forum 2019, Number AIAA-2019-3710
,
Dallas, TX
,
June 17–21
.
7.
Giles
,
M. B.
,
1988
, “
UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery
,”
Technical Report, MIT GTL 195
, http://hdl.handle.net/1721.1/104734
8.
Jung
,
A. R.
,
Mayer
,
J. F.
, and
Stetter
,
H.
,
1996
, “
Simulation of 3D-Unsteady Stator/Rotor Interaction in Turbomachinery Stages of Arbitrary Pitch Ratio
,”
International Gas Turbine and Aeroengine Congress and Exhibition, ASME Paper No. 96-GT-96
,
Birmingham, UK
,
June 10–13
.
9.
Gopinath
,
A.
,
van der Weide
,
E.
,
Alonso
,
J. J.
,
Jameson
,
A.
,
Ekici
,
K.
, and
Hall
,
K. C.
,
2007
, “
Three Dimensional Unsteady Multi-Stage Turbomachinery Simulations Using the Harmonic Balance Technique
,”
Proceedings of the 45th AIAA Arospace Sciences Meeting and Exhibit
,
Reno, Nevada
,
Jan. 8–11
, AIAA Paper No. 2007-0892.
10.
Hall
,
C. K.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
40
), pp.
879
886
.
11.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
(
3
), pp.
508
514
.
12.
Corral
,
R.
,
Crespo
,
J.
, and
Gisbert
,
F.
,
2004
, “
Parallel Multigrid Unstructured Methods for the Solution of the Navier Stokes Equations
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2004-0761
,
Reno, Nevada
,
Jan. 5–8, 2004
.
13.
Crespo
,
J.
,
Corral
,
R.
, and
Pueblas
,
J.
,
2015
, “
An Implicit Harmonic Balance Method in Graphics Processing Units for Oscillating Blades
,”
ASME J. Turbomach.
,
138
(
3
), p.
031001
.
14.
Nyukhtikov
,
M.
,
Smelnova
,
N.
,
Mitchell
,
B.
, and
Holmes
,
D.
,
2003
, “
Optimized Dual-Time Stepping Technique for Time Accurate Navier-Stokes Calculations
,”
Proceedings of 10th ISUAAT
,
Durham, NC
,
Sept. 8–11
,
K. C.
Hall
,
R. E.
Kielb
, and
P.
Thomas
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
449
462
.
15.
Burgos
,
M. A.
,
Contreras
,
J.
, and
Corral
,
R.
,
2011
, “
Efficient Edge-Based Rotor/Stator Interaction Method
,”
AIAA J.
,
49
(
1
), pp.
19
31
.
16.
Giovannini
,
M.
,
Marconcini
,
M.
,
Armone
,
A.
, and
Bertini
,
F.
,
2014
, “
Evaluation of Unsteady Computational Fluid Dynamics Models Applied to the Analysis of a Transonic High Pressure Turbine Stage
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
7
), pp.
813
824
.
17.
May
,
M.
,
Mauffrey
,
Y.
, and
Sicot
,
F.
,
2011
, “
Numerical Flutter Analysis of Turbomachinery Bladings on Time-Linearized, Time-Spectral and Time-Accurate Simulations
,”
Proceedings of the International Forum of Aeroelasticity and Structural Dynamics (IFASD), Association Aèronautique et Astronautique de France
,
Paris
,
June 26–30.
18.
Sijtsma
,
P.
,
Rademaker
,
E.
, and
Schulten
,
J.
,
1998
, “
Experimental Validation of Lifting Surface Theory for Rotor-Stator Interaction
,”
AIAA J.
,
3
(
6
), pp.
900
906
.
19.
Gomar
,
A.
,
Bouvy
,
Q.
,
Sicot
,
F.
,
Dufour
,
G.
,
Cinnela
,
P.
, and
Francoise
,
B.
,
2014
, “
Convergence of Fourier-Based Time Methods for Turbomachinery Wake Passing Problems
,”
J. Comput. Phys.
,
278
, pp.
229
256
.
20.
Behn
,
M.
, and
Tapken
,
U.
,
2019
, “
Investigation on Sound Generation and Transmission Effects Through the ACAT1 Fan Stage Using Compressed Sensing Base Mode Analysis
,”
AIAA Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, AIAA-2019-2502
,
Delft, The Netherlands
,
May 20–23
.
21.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME Paper No. GT2014-25230, ASME Turbo Expo
,
Düseldorf, Germany
,
June 16–20
.
You do not currently have access to this content.