Abstract

A composite fan stage representative of a modern Ultra High Bypass Ratio (UHBR) architecture has been investigated experimentally on a novel test facility at Ecole Centrale de Lyon. These measurements show indications for strong overloading of the tip region resulting in extensive blockage of the blade passage. The performance of the fan is analyzed with extensive instrumentation including radial profiles upstream and downstream of the rotor. Unsteady pressure measurements help to interpret the flow structure in the tip region. The results are presented across a range of operating points on the design speedline. At the stability limit, the machine suffers from non-synchronous vibrations, which result from small-scale aerodynamic disturbances propagating between the leading edges. Detailed analysis of the occurring waveforms is presented for two operating speeds. In order to further analyze the observed phenomena, a numerical study has been conducted using the Reynolds-averaged Navier–Stokes (RANS) solver elsA. The results of steady calculations are discussed in comparison with the detailed experiments. Unsteady simulations near the stability limit accurately predict the aerodynamic disturbances observed during non-synchronous vibrations (NSV). The obtained results are unusual for typical state-of-the-art transonic fans, as they show the same behavior as high-pressure compressor front stages, dominated by a blockage caused by tip-leakage flow. Even though flutter is not observed, the observed non-synchronous vibration mechanism is a critical aeroelastic phenomenon which is of great interest for future designs of low-speed fans.

References

1.
Owens
,
R.
,
Hasel
,
K.
, and
Mapes
,
D.
,
1990
, “
Ultra High Bypass Turbofan Technologies for the Twenty-First Century
,”
AIAA 26th Joint Propulsion Conference
,
Orlando, FL
,
July
16–18
.
2.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2014
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
3.
Borradaile
,
J.
,
1988
, “
Towards the Optimum Ducted UHBR Engine
,”
AIAA 24th Joint Propulsion Conference
,
Boston, MA
,
July
.
4.
Zhai
,
Y.
,
Bladh
,
R.
, and
Dyverfeldt
,
G.
,
2012
, “
Aeroelastic Stability Assessment of an Industrial Compressor Blade Including Mistuning Effects
,”
ASME J. Turbomach.
,
134
(
6
), p.
060903
.
5.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2015
, “
Aeroelastic Instability in Transonic Fans
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022604
.
6.
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2019
, “
Improving the Flutter Margin of an Unstable Fan Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071006
.
7.
Kielb
,
R. E.
,
Barter
,
J. W.
,
Thomas
,
J. P.
, and
Hall
,
K. C.
,
2003
, “
Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study
”. ASME Paper No. GT2003-38634.
8.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
9.
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2020
, “
Non-synchronous Vibration in Axial Compressors: Lock-in Mechanism and Semi-analytical Model
,”
J. Sound Vib.
,
488
, p.
115649
.
10.
Brandstetter
,
C.
,
Jungst
,
M.
, and
Schiffer
,
H.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
11.
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2018
, “
On the Importance of Engine-Representative Models for Fan Flutter Predictions
,”
ASME J. Turbomach.
,
140
(
8
), p.
081005
.
12.
Brandstetter
,
C.
,
Pages
,
V.
,
Duquesne
,
P.
,
Paoletti
,
B.
,
Aubert
,
S.
, and
Ot- tavy
,
X.
,
2019
, “
Project PHARE-2, A High-Speed UHBR Fan Test Facility for a New Open-Test Case
,”
ASME J. Turbomach.
,
141
(
10
), p.
101004
.
13.
Town
,
J.
, and
Camci
,
C.
,
2011
, “
Sub-miniature Five-Hole Probe Calibration Using a Time Efficient Pitch and Yaw Mechanism and Accuracy Improvements
”. ASME Paper No. GT2011-46391.
14.
Gazaix
,
M.
,
Jolls
,
A.
, and
Lazareff
,
M.
,
2002
, “
The Elsa Object-Oriented Computational Tool for Industrial Applications
”. ONERA Technical Publications, 220.
15.
Smith
,
B.
,
1990
, “
The k-kl Turbulence Model and Wall Layer Model for Compressible Flows
,”
AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference
,
Seattle, WA
,
June
.
16.
Kok
,
J.
,
2000
, “
Resolving the Dependence on Freestream Values for the k − ω Turbulence Model
,”
AIAA J.
,
38
(
7
), pp.
1292
1295
.
17.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2004
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.
18.
Choi
,
M.
,
Smith
,
N.
, and
Vahdati
,
M.
,
2013
, “
Validation of Numerical simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
.
19.
Zhao
,
F.
,
Dodds
,
J.
, and
Vahdati
,
M.
,
2013
, “
Poststall Behaviour of a Multi-stage High Speed Compressor at Off-Design Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121002
.
20.
Zhang
,
W.
, and
Vahdati
,
M.
,
2020
, “
Stall and Recovery Process of a Transonic Fan With and Without Inlet Distortion
,”
ASME J. Turbomach.
,
142
(
1
), p.
011003
.
21.
Lu
,
Y.
,
Lad
,
B.
,
Green
,
J.
,
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2019
, “
Effect of Geometry Variability on Transonic Fan Blade Untwist
,”
Int. J. Turbomach. Propuls. Power
,
4
(
3
), p.
24
.
22.
Schlechtriem
,
S.
, and
Ltzerich
,
M.
,
1997
, “
Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall
,” ASME Paper No. 97-GT-041.
23.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.
24.
Brandstetter
,
C.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2019
, “
Compressible Modal Instability Onset in an Aerodynamically Mistuned Transonic Fan
,”
ASME J. Turbomach.
,
141
(
3
), p.
031004
.
25.
Hah
,
C.
,
2017
, “
Effects of Double-Leakage tip Clearance Flow on the Performance of a Compressor Stage With a Large Rotor tip gap
,”
ASME J. Turbomach.
,
139
(
6
), p.
061006
.
You do not currently have access to this content.