Abstract

Given the maturity of the gas turbine engine since its invention and considering the limited resources expected to be allocated for NASA aeronautics research and development, we ask the question are NASA technology investments still needed to enable future turbine engine-based propulsion systems? If so, what is NASA's unique role to justify NASA's investment? To address this topic, we first summarize NASA's role and contributions to turbine engine development, specific to both (1) NASA's role in conducting experiments to understand flow physics and provide relevant benchmark validation experiments for computational fluid dynamics (CFD) code development, validation, and assessment and (2) the impact of technologies resulting from NASA collaborations with industry, academia, and other government agencies. Note that the scope of the discussion is limited to the NASA technology contributions with which the author was intimately associated and does not represent the entirety of the NASA contributions to turbine engine technology. The specific research, development, and demonstrations discussed herein were selected to both (1) provide a comprehensive review and reference list of the technology and its impact and (2) identify NASA's unique role and highlight how NASA's involvement resulted in additional benefit to the gas turbine engine community. Second, we will discuss current NASA collaborations that are in progress and provide a status of the results. Finally, we discuss the challenges anticipated for future turbine engine-based propulsion systems for civil aviation and identify potential opportunities for collaboration where NASA involvement would be beneficial.

References

References
1.
Epstein
,
A. H.
,
2014
, “
Aeropropulsion for Commercial Aviation in the Twenty-First Century and Research Directions Needed
,”
AIAA J.
,
52
(
5
), pp.
901
911
. 10.2514/1.J052713
2.
Bullock
,
R. O.
, and
Johnsen
,
I. A.
,
1965
, Aerodynamic Design of Axial Flow Compressors, NASA, SP–36.
3.
A. J.
Glassman
, ed.,
1972
,
Turbine Design and Application
,
NASA
, SP-290.
4.
Bowles
,
M. D.
,
2010
, “The “Apollo” of Aeronautics: NASA’s Aircraft Energy Efficiency Program, 1973–1987,”
NASA e-book
, http://www.nasa.gov/connect/ebooks/aero_apollo_detail.htmlAccessed August 31, 2016.
5.
Ciepluch
,
C. C.
,
Davis
,
D. Y.
, and
Gray
,
D. E.
,
1987
, “
Results of NASA’s Energy Efficient Engine Program
,”
J. Propul. Power
,
3
(
6
), pp.
560
568
. 10.2514/3.23024
6.
Davis
,
D. Y.
, and
Stearns
,
E. M.
,
1985
,
Energy Efficient Engine: Flight Propulsion System Final Design and Analysis, NASA CR–168219
.
7.
Strazisar
,
A. J.
,
1985
, “
Investigation of Flow Phenomena in a Transonic Fan Using Laser Anemometry
,”
J. Eng. Gas Turb. Power
,
107
(
2
), pp.
427
436
. 10.1115/1.3239743
8.
Hathaway
,
M. D.
,
Gertz
,
J. B.
,
Epstein
,
A. H.
, and
Strazisar
,
A. J.
,
1986
, “
Rotor Wake Characteristics of a Transonic Axial Flow Fan
,”
AIAA J.
,
24
(
11
), pp.
1802
1810
. 10.2514/3.9527
9.
Wood
,
J. R.
,
Strazisar
,
A. J.
, and
Simonyi
,
P. S.
,
1987
,
Shock Structure Measured in a Transonic Fan Using Laser Anemometry
,
AGARD–CP–401.
10.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
,
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,
NASA TP–2879.
11.
Suder
,
K. L.
,
Okiishi
,
T. H.
,
Hathaway
,
M. D.
,
Strazisar
,
A. J.
, and
Adamczyk
,
J. J.
,
1987
,
Measurements of the Unsteady Flow Field Within the Stator Row of a Transonic Axial-Flow Fan: Part I—Measurement and Analysis Technique
,
ASME Paper 87–GT–226.
12.
Hathaway
,
M. D.
,
Okiishi
,
T. H.
,
Suder
,
K. L.
,
Strazisar
,
A. J.
, and
Adamczyk
,
J. J.
,
1987
,
Measurements of the Unsteady Flow Field Within the Stator Row of a Transonic Axial-Flow Fan: Part II—Results and Discussion
,
ASME Paper 87–GT–227.
13.
Suder
,
K. L.
,
1996
, “
Experimental Investigation of the Flow Field in a Transonic Axial Flow Compressor With Respect to the Development of Blockage and Loss
,”
NASA TM107310
, August 1996.
14.
Suder
,
K. L.
, and
Celestina
,
M. L.
,
1996
, “
Tip Clearance Vortex/Shock Interactions in a Highly Loaded Transonic Compressor Rotor
,”
J. Turbomach.
,
118
(
2
), pp.
218
229
.
15.
Suder
,
K. L.
,
1998
, “
Blockage Development in a Transonic, Axial Flow Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
465
476
.10.1115/1.2841741
16.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
,
Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced, High-Pressure-Ratio Core Compressor
,
NASA TP–1337.
17.
Dunham
,
J.
,
1998
,
AGARD WG26 Report—Summary of 13 Different Simulations of Rotor 37 AGARD Advisory Report AR-355, May 1998 CFD Validation for Propulsion System Components
.
Also Summarized in ASME 98-GT-050.
18.
Denton
,
J.
,
1996
, “
Lessons Learned From Rotor 37
,”
The Third International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (ICIASF)
,
Beijing, China
,
Sept. 1–6, 1996
.
19.
Dalbert
,
P.
, and
Wiss
,
D. H.
,
1995
, “
Numerical Transonic Flowfield Predictions for NASA Compressor Rotor 37
,”
ASME 95-GT-326.
20.
Arima
,
T. A.
,
Sonoda
,
T.
, and
Masatoshi
,
S. A.
,
1997
,
Numerical Investigation of Transonic Axial Compressor Rotor Flow Using a Low Reynolds Number k-epsilon Turbulence Model (R37 and R67)
,
ASME 97-GT-082.
21.
Arima
,
T.
,
Masatoshi
,
S.
, and
Yamaguchi
,
Y.
,
1998
,
The Flow Field in the Tip Clearance Region of an Axial Compressor Rotor
.
22.
Arima
,
T.
,
Sonoda
,
T.
,
Shirotori
,
M.
, and
Yamaguchi
,
Y.
,
1998
,
Computation of Subsonic and Transonic Compressor Rotor Flow Taking Account of Reynolds Stress Anisotropy
,
ASME 98-GT-423.
23.
Calvert
,
W. J.
,
A Synthesis of NASA Compressor Rotor 37 Using a 3D CFD Code Proceedings of “Verification of Design Methods by Test and Analysis
,”
Royal Aeronautical Society
, https://doi.org/10.1243/0954406991522671Accessed 2000.
24.
Chima
,
R.
,
1996
,
A K-omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows
, NASA TM10705,
AIAA Reno Meeting
, 1996.
25.
Chima
,
R.
,
1998
, “
Calculation of Tip Clearance Effects in a Transonic Compressor Rotor
,”
J. Turbomach.
,
120
(
1
), pp.
131
140
. 10.1115/1.2841374
26.
Shabbir
,
A.
,
1996
,
Assessment of Three Turbulence Models in a Compressor Rotor 96-GT-198
.
27.
Hah
,
C.
, and
Loellbach
,
J.
,
1997
, “
Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows
,”
ASME J. Turbomach.
,
121
(
1
), pp.
67
77
. 10.1115/1.2841235
28.
Shabbir
,
A.
,
1997
,
The Effect of Hub Leakage Flow on Two High Speed Axial Compressor Rotors
,
ASME 97-GT-346 (to be published in ASME J. Turbomachinery).
29.
Arnone
,
A.
,
1997
,
Grid Dependency Study for the NASA Rotor 37 Compressor Blade
,
ASME 97-GT-384.
30.
Calvert
,
J.
,
1997
,
Evaluation of a 3D Viscous Code for Turbomachinery Flows
,
ASME 97-GT-078.
31.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
2002
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
2
), pp.
275
284
. 10.1115/1.1445793
32.
Hathaway
,
M. D.
,
Chriss
,
R. M.
,
Wood
,
J. R.
, and
Strazisar
,
A. J.
,
1993
, “
Experimental and Computational Investigation of the NASA Low-Speed Centrifugal Compressor Flow Field
,”
ASME J. Turbomach.
,
115
(
3
), pp.
527
542
. 10.1115/1.2929285
33.
Skoch
,
G. J.
, and
Moore
,
R. D.
,
1987
,
Performance of Two 10-lb/sec Centrifugal Compressors With Different Blade and Shroud Thicknesses Operating Over a Range of Reynolds Numbers
,
NASA TM–100115 (AVSCOM–TR–87–C–21 and AIAA–87–1745).
34.
Skoch
,
G. J.
,
Prahst
,
P. S.
,
Wernet
,
M. P.
,
Wood
,
J. R.
, and
Strazisar
,
A. J.
,
1997
,
Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller
,
NASA TM–107541 (ARL–TR–1448 and ASME Paper 97–GT–342).
35.
Giel
,
P. W.
,
Van Fossen
,
G. J.
,
Boyle
,
R. J.
,
Thurman
,
D. R.
, and
Civinskas
,
K. C.
,
1999
,
Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade
,
NASA/TM—1999-209296.
36.
Giel
,
P. W.
,
Thurman
,
D. R.
,
VanFossen
,
G. J.
,
Hippensteele
,
S. A.
, and
Boyle
,
R. J.
,
1998
, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
120
(
2
), pp.
305
313
. 10.1115/1.2841407
37.
Durbin
,
P. A.
, and
Pettersson Reif
,
B. A.
,
2001
,
Statistical Theory and Modeling for Turbulent Flows
,
John Wiley & Sons
,
New York, NY
.
38.
Adamczyk
,
J. J.
,
1984
,
Model Equation for Simulating Flows in Multistage Turbomachinery
,
NASA TM‒86869.
39.
Celestina
,
M. L.
, and
Mulac
,
R. A.
,
2009
,
Assessment of Stage 35 With APNASA
,
AIAA 2009–1057.
40.
Herrick
,
G. P.
,
Hathaway
,
M. D.
, and
Chen
,
J.
,
2009
,
Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage
,
AIAA 2009–1059.
41.
Ameri
,
A. A.
,
2009
,
NASA ROTOR 37 CFD CODE Validation: Glenn-HT Code
,
AIAA 2009‒1060.
42.
Hah
,
C.
,
2009
,
Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37
,
AIAA 2009–1061.
43.
Chima
,
R. V.
,
2009
,
SWIFT Code Assessment for Two Similar Transonic Compressors
,
AIAA 2009–1058.
44.
Suder
,
K. L.
,
Chima
,
R. J.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1994
, “
The Effects of Adding Roughness and Thickness to a Transonic/Supersonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
. 10.1115/1.2836561
45.
Roberts
,
W. B.
,
1995
, “
Advanced Turbofan Blade Refurbishment Technique
,”
ASME J. Turbomach., Tech. Brief
,
117
(
4
), pp.
666
667
. 10.1115/1.2836586
46.
Roberts
,
W. B.
,
Armin
,
A.
,
Kassaseya
,
G.
,
Suder
,
K. L.
,
Thorp
,
S. A.
, and
Strazisar
,
A. J.
,
2002
, “
The Effect of Variable Chord Length on Transonic Axial Rotor Performance
,”
ASME J. Turbomach.
,
124
(
3
), pp.
351
356
. 10.1115/1.1459734
47.
Roberts
,
W. B.
,
Prahst
,
P. S.
,
Thorp
,
S.
, and
Strazisar
,
A. J.
,
2005
, “
The Effect of Ultrapolish on a Transonic Axial Rotor
,”
ASME GT2005-69132, Proceedings of the ASME Turbo Expo 2005
,
Reno, Nevada
,
June 6–9, 2005
.
48.
Berdanier
,
R. A.
, and
Key
,
N. L.
,
2015
, “
An Experimental Investigation of the Flow Physics Associated with End Wall Losses and Large Rotor Tip Clearances as Found in the Rear Stages of a High Pressure Compressor
,
NASA/CR-2015-218868.
49.
Volino
,
R. J.
,
2011
,
Experimental and Computational Investigation of Unsteady Endwall and Tip Gap Flows in Gas Turbine Passages, Final Report for NASA Interagency Agreement NNC11IA11I
, June 2011–September 2016, delivered January 25, 2017.
50.
Katz
,
J.
,
2017
,
High Resolution Measurements of the Effects of Tip Geometry on Flow Structure and Turbulence in the Tip Region of a Rotor Blade
, Final Report for NASA Grant/Cooperative Agreement Number: NNX11AI21A for the period of June 6, 2011–July 31, 2016, Final Report Delivered February 2017.
51.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Frechette
,
L. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
,
1998
, “
Active Stabilization of Rotating Stall and Surge in a Transonic Single Stage Axial Compressor
,”
ASME J. Turbomach.
,
120
(
4
), pp.
625
636
. 10.1115/1.2841772
52.
Spakovszky
,
Z. S.
,
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Van Schalkwyk
,
C. M.
,
Suder
,
K. L.
,
Bright
,
M.
, and
Strazisar
,
A. J.
,
1999
, “
Rotating Stall Control in a High-Speed Stage With Inlet Distortion, Part I—Radial Distortion
,”
ASME J. Turbomach.
,
121
(
3
), pp.
510
516
.10.1115/1.2841345
53.
Spakovszky
,
Z. S.
,
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Van Schalkwyk
,
C. M.
,
Suder
,
K. L.
,
Bright
,
M.
, and
Strazisar
,
A. J.
,
1999
, “
Rotating Stall Control in a High-Speed Stage With Inlet Distortion, Part II—Circumferential Distortion
,”
ASME J. Turbomach.
,
121
(
3
), pp.
517
524
. 10.1115/1.2841346
54.
Suder
,
K. L.
,
Hathaway
,
M. D.
,
Thorp
,
S. A.
,
Strazisar
,
A. J.
, and
Bright
,
M. M.
,
2001
, “
Compressor Stability Enhancement Using Discrete Tip Injection
,”
ASME J. Turbomach.
,
123
(
1
), pp.
14
23
. 10.1115/1.1330272
55.
Strazisar
,
A. J.
,
Bright
,
M. M.
,
Thorp
,
S. A.
,
Culley
,
D.
,
Suder
,
K. L.
, and
Prahst
,
S.
,
2004
, “
Compressor Stall Control Through Endwall Recirculation
,”
ASME GT2004-54295 in Proceedings of the ASME Turbo EXPO 2004 Power for Land, Sea, and Air
,
June 14–17
, selected for ASME Journal.
56.
Suder
,
K. L.
, and
Thomas
,
S. R.
,
2009
, “
An Overview of the NASA Hypersonic Project’s Combined Cycle Engine Mode Transition Research Experiment
,”
Paper 0664 at the JANNAF (Joint Army, Navy, NASA, Air Force) 43rd CS/31st APS/25th PSHS Joint Meeting
,
La Jolla, CA
,
Dec. 7–11
.
57.
Auslender
,
A.
,
Suder
,
K. L.
, and
Thomas
,
S. R.
,
2009
, “
An Overview of the NASA FAP Hypersonics Project Airbreathing Propulsion Research
,”
AIAA Paper 185450 Published and Presented at the AIAA International Space Planes and Hypersonic Systems Conference
,
Bremen, Germany
,
Oct. 2009
.
58.
Sanders
,
B. W.
, and
Weir
,
L. J.
,
2008
, “
Aerodynamic Design of a Dual-Flow Mach 7 Hypersonic Inlet System for a Turbine-Based Combined-Cycle Hypersonic Propulsion System
,”
NASA-CR-2008-215214
, May 2008.
59.
Bilardo
,
V. J.
,
Curran
,
F. M.
,
Lovell
,
N. T.
, and
Maggio
,
G.
,
2003
, “
Benefits of Airbreathing Launch Systems for Access to Space
,”
AIAA 2003-5265, 39th Joint Propulsion Conference.
60.
Shafer
,
D. G.
, and
McNelis
,
N.
,
2003
, “
Development of a Ground Based Mach 4+ Revolutionary Turbine Accelerator Technology Demonstrator (RTATD) for Access to Space
ISOABE 2003.
61.
RTA Propulsion System Data Requirements/Boeing TSTO Study from NASA Glenn
,”
RASER Contract NAS3-01135
,
2002
.
62.
Mielke
,
M.
,
2009
, “
RTA/GE57 Subscale Fan Rig, Final Report—Mechanical Design
,”
NASA CR-2010-215814.
63.
Mielke
,
M.
,
Clark
,
D.
, and
Wood
,
P.
,
2009
, “
RTA/GE57 Subscale Fan Rig, Final Report—Aerodynamic Test Results
,“
NASA CR-2009-215816.
64.
Suder
,
K. L.
,
Prahst
,
S.
, and
Thorp
,
S. A.
,
2010
, “
Results of an Advanced Fan Stage Operating Over a Wide Range of Speed & Bypass Ratio—Part I: Fan Stage Design and Experimental Results
,”
Proceedings of the ASME Turbo EXPO 2010
,
June 14–19, 2010
, ASME GT2010-22825.
65.
Suder
,
K. L.
,
Adamczyk
,
J. J.
,
Wood
,
P.
,
Zenon
,
R.
,
Mielke
,
M.
,
Powell
,
B.
, and
LaChapelle
,
D.
,
2005
, “
Design and Analysis of a Mach 4 Capable Fan Stage for the RTA Turbine Based Combined Cycle Propulsion System
,”
Proceedings for the JANNAF 40th Combustion Science and 28th Air Breathing Propulsion Meeting
,
Charleston, SC
,
June 13–17
.
66.
Celestina
,
M. L.
,
Suder
,
K. L.
, and
Kulkarni
,
S.
,
2010
, “
Results of an Advanced Fan Stage Operating Over a Wide Range of Speed & Bypass Ratio—Part II: CFD and Experimental Results
,”
Proceedings of the ASME Turbo EXPO 2010
,
June 14–19
, ASME GT2010-23386.
67.
Suder
,
K. L.
,
Durbin
,
K.
,
Giel
,
P.
,
Poinsatte
,
P.
,
Thurman
,
D.
, and
Ameri
,
A.
,
2018
, “
Variable Speed Turbine Technology Development and Demonstration
,”
American Helicopter Society (AHS) International’s 74th Annual Forum and Technology Display the Future of Vertical Flight
,
Phoenix, AZ
,
May 14–17
.
68.
Snyder
,
C. A.
, and
Acree
,
C. W.
,
2012
, “
Preliminary Assessment of Variable Speed Power Turbine Technology on Civil Tiltrotor Size and Performance
,”
AHS 68th Annual Forum
,
Fort Worth, TX
,
May 2012
.
69.
Snyder
,
C. A.
,
2014
, “
Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)
,”
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Cleveland, OH
,
July 28–30
.
70.
Acree
,
C. W.
, and
Snyder
,
C. A.
,
2012
, “
Influence of Alternative Engine Concepts on LCTR2 Sizing and Mission Profile
,”
AHS Future Vertical Lift Aircraft Design Conference
,
San Francisco, CA
,
Jan. 2012
.
71.
Robuck
,
M.
,
Wilkerson
,
J. B.
,
Maciolek
,
R.
, and
Vonderwell
,
D.
,
2013
, “
The Effect of Rotor Cruise Tip Speed, Engine Technology and Engine/Drive System RPM on the NASA Large Civil Tiltrotor (LCTR2) Size and Performance
,”
NASA/CR-2013-216593
, March 2013.
72.
Robuck
,
M.
,
Wilkerson
,
J. B.
,
Snyder
,
C. A.
,
Zhang
,
Y.
, and
Maciolek
,
B.
,
2013
, “
Study and Sub-System Optimization of Propulsion and Drive Systems for the Large Civil Tiltrotor (LCTR2) Rotorcraft
,”
AHS 69th Annual Forum
,
Phoenix, Arizona
,
May 2013
, also NASA TM-2013-218103, December 2013.
73.
D′Angelo
,
M.
,
1995
, “
Wide Speed Range Turboshaft Study
,”
NASA/CR—1995-198380
, August 1995.
74.
Snyder
,
C. A.
, and
Thurman
,
D. R.
, “
Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)
,”
Proc. AHS Int. 65th Annual Forum
,
May 2009
.
75.
Welch
,
G. E.
, and
Boyle
,
R. J.
,
2010
, “
Assessment of Aerodynamic Challenges of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application
,”
66th Annual Forum of the American Helicopter Society
,
Phoenix
,
May 10–12
.
76.
Welch
,
G. E.
,
McVetta
,
A. B.
,
Stevens
,
M. A.
,
Howard
,
S. A.
,
Giel
,
P. W.
,
Ameri
,
A. A.
,
To
,
W.
,
Skoch
,
G. J.
, and
Thurman
,
D. R.
,
2012
, “
Variable-Speed Power-Turbine Research at Glenn Research Center
,”
68th Annual Forum and Technology Display
,
AHS International
,
Fort Worth, TX
,
May 2012
, NASA TM-2012-217605, July 2012.
77.
Howard
,
S. A.
,
2012
, “
Rotordynamic Feasibility of a Conceptual Variable-Speed Power Turbine Propulsion system for Large Civil Tilt-Rotor Applications
,”
NASA/TM-2012-217134
, July 2012.
78.
Ford
,
A.
,
Turner
,
E.
,
Bloxham
,
M.
,
Gegg
,
S.
,
King
,
B.
,
Harris
,
C.
,
Bell
,
M.
, and
Eames
,
D.
,
2012
, “
Variable-Speed Power-Turbine Component Research Plan
,”
NASA/CR-2012-217423
, Feb. 2012 (Export Controlled, unlimited rights).
79.
Suchezky
,
M.
, and
Cruzen
,
C. S.
,
2012
,
Variable-Speed Power Turbine for the Large Civil Tilt Rotor
,”
NASA/CR-2012-217424
, Feb. 2012 (Unlimited rights).
80.
Flegel-McVetta
,
A. B.
,
Giel
,
P. W.
,
Welch
,
G. E.
,
Ames
,
F.
,
and Long
,
A.
, and
Jonathon
,
A.
,
2015
, “
Complimentary Aerodynamic Datasets for Variable-Speed Power-Turbine Blade Section From Two Independent Transonic Turbine Cascades
,”
Paper ISABE 2015-20163, International Society of Air-Breathing Engines (ISABE) Conference
,
Phoenix, AZ
,
July 2015
.
81.
Flegel-McVetta
,
A. B.
,
Giel
,
P. W.
, and
Welch
,
G. E.
,
2014
, “
Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations
,”
Paper AIAA-2014-3933, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Cleveland, OH
,
July 2014
.
82.
McVetta
,
A. B.
,
Giel
,
P. W.
, and
Welch
,
G. E.
,
2013
, “
Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade at Low Inlet Turbulence
,”
GT2013-94695 for IGTI 2013 Turbo Expo Conference
,
San Antonio, TX
,
June 2013
.
83.
McVetta
,
A. B.
,
Giel
,
P. W.
, and
Welch
,
G. E.
,
2012
, “
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
,”
AIAA-2012-3879, Proceedings of 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Atlanta, GA
,
July–Aug. 2012
.
84.
Mihelish
,
M.
, and
Ames
,
F. E.
,
2013
, “
The Development of a Closed Loop High Speed Cascade Wind Tunnel for Cascade Testing at Moderate to Low Reynolds Numbers
,”
ASME/GT2013-95048, 2013.
85.
Moualeu
,
L. P. G.
,
Long
,
J. A.
,
Stahl
,
K. A.
,
Ames
,
F. E.
, and
Suzen
,
Y. B.
,
2014
, “
Midline Heat Transfer and Pressure Measurements on an Incident Tolerant Blade Section for a Variable Speed Power Turbine at Low to Moderate Reynolds Numbers in a Transonic Turbine Cascade
,”
AIAA-2014-3936, Proceedings of 50th Joint Propulsion Conference
,
July 2014
.
86.
Long
,
J. A.
,
Moualeu
,
L. P. G.
,
Hemming
,
N. J.
,
Ames
,
F. E.
, and
Suzen
,
Y. B.
,
2015
, “
Variable Speed Power Turbine Measurements at Low to Moderate Reynolds Numbers in a Transonic Turbine Cascade: Aerodynamic Loss Surveys
,”
GT2015-42504, ASME Turbo Expo
,
Montreal, Canada
,
June 2015
.
87.
Ameri
,
A.
,
2018
, “
An Implicit LES Simulation of Variable-Speed Power Turbine Cascade for Low Free-Stream Turbulence Conditions
,”
GT2018-77120 For IGTI Turbo Expo Conference
,
Oslo, Norway
,
June 2018
.
88.
Chen
,
J.-P.
, and
Whitfield
,
D. L.
,
1993
,
Navier-Stokes Calculations for the Unsteady Flowfield of Turbomachinery
. 10.2514/6.1993-676.
89.
Suder
,
K. L.
,
2012
, “
Overview of NASA Environmentally Responsible Aviation Project’s Propulsion Technology Portfolio
,”
published in the Proceedings of AIAA 48th Joint Propulsion Conference
,
July 2012
.
90.
Suder
,
K. L.
,
Delaat
,
J.
,
Hughes
,
C.
,
Arend
,
D.
, and
Celestina
,
M.
,
2013
, “
NASA Environmentally Responsible Aviation Project’s Propulsion Technology Phase I Overview and Highlights of Accomplishments
,”
AIAA 2013–0414.
Also presented at the FAA CLEEN Consortium Open Session,
Oct. 27, 2010
.
91.
Van Zante
,
D. E.
, and
Suder
,
K. L.
,
2015
, “
Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise, and Emissions Reduction
,”
ISABE-2015-20209, 22nd International Symposium on Air Breathing Engines
,
Phoenix, Arizona
,
Oct.25–30, 2015
.
92.
Gorrell
,
S. E.
,
Tsung
,
F.
,
Yao
,
J.
, and
Vickery
,
R.
, “
Computational Science and Engineering Advances Understanding of Complex Unsteady Flows in High Performance Fans and Compressors
,”
Proceedings of the 2006 DoD High Performance Computing Modernization Program Users Group Conference
,
June 2006
.
93.
Celestina
,
M. L.
,
Fabian
,
J. C.
, and
Kulkarni
,
S.
,
2012
,
NASA Environmentally Responsible Aviation High Overall Pressure Ratio Compressor Research—Pre-test CFD
,
AIAA 2012–4040.
94.
Prahst
,
P. S.
,
Kulkarni
,
S.
, and
Sohn
,
K. H.
,
2015
,
Experimental Results of the First Two Stages of an Advanced Transonic Core Compressor Under Isolated and Multi-stage Conditions
,
ASME Paper GT2015–42727.
95.
Lurie
,
D.
, and
Breeze-Stringfellow
,
A.
,
2015
, “
Evaluation of Experimental Data From a Highly Loaded Transonic Compressor Stage to Determine Loss Sources
,”
ASME GT2015-42526, Proceedings of the ASME Turbo Expo 2015
,
June 15–19, 2015
,
Montreal, Canada
.
96.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2014
, “
Ultra-Short Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME GT2014-26369
,
Dusseldorf, Germany
,
June 16–20, 2014
.
97.
Bozak
,
R. F.
,
Hughes
,
C. E.
, and
Buckley
,
J.
,
2013
, “
The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor
,”
GT2013-95114, ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7, 2013
.
98.
Van Zante
,
D. E.
,
2013
,
The NASA Environmentally Responsible Aviation Project/General Electric Open Rotor Test Campaign
,
AIAA 2013–0414.
99.
Van Zante
,
D. E.
,
Collier
,
F.
,
Orton
,
A.
,
Arif Khalid
,
S.
,
Wojno
,
J. P.
, and
Wood
,
T. H.
,
2014
, “
Progress in Open Rotor Propulsors: The FAA/GE/NASA Open Rotor Test Campaign
,”
Aeronaut. J.
,
118
(
1208
), pp.
1181
1213
. 10.1017/S0001924000009842
100.
International Civil Aviation Organization
,
2008
, Annex 16 to the convention on international civil aviation. In Environmental protection, Vol. II, 3rd ed., Quebec: International Civil Aviation Organization. https://law.resource.org/pub/us/cfr/ibr/004/icao.annex.16.v2.2008.pdf Accessed March 8, 2017.
101.
Hendricks
,
E. S.
,
Berton
,
J. J.
,
Haller
,
W. J.
,
Tong
,
M. T.
, and
Guynn
,
M. D.
,
2013
,
Updated Assessments of an Open Rotor Airplane Using Advanced Blade Designs
,
AIAA 2013–3628.
102.
Smith
,
L. L.
,
2015
, “
N+2 and N+3 Low Emissions Combustor Development
,”
Presented During the AIAA Science and Technology Forum
,
Kissimmee, FL
,
Jan. 7, 2015
.
103.
Arend
,
D. J.
,
Tillman
,
G.
, and
O’Brien
,
W. F.
,
2012
,
Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems
,
AIAA 2012–4041.
104.
Florea
,
R. V.
,
Matalanis
,
C.
,
Hardin
,
L. W.
,
Stucky
,
M.
, and
Shabbir
,
A.
,
2012
,
Parametric Analysis and Design for Embedded Engine Inlets
,
AIAA Paper 2012–3994.
105.
Bakhle
,
M. A.
,
Reddy
,
T. S. R.
,
Herrick
,
G. P.
,
Shabbir
,
A.
, and
Florea
,
R. V.
,
2012
,
Aeromechanics Analysis of a Boundary Layer Ingesting Fan
,
AIAA 2012–3995.
106.
Bakhle
,
M. A.
,
Reddy
,
T. S. R.
, and
Coroneos
,
R. M.
,
2014
, Forced Response of a Fan With Boundary Layer Inlet Distortion, AIAA Paper 2014–3734.
107.
Tillman
,
G.
,
Hardin
,
L. W.
, and
Moffitt
,
B. A.
,
2011
, “
System-Level Benefits
of
Boundary Layer Ingesting Propulsion
,”
Invited Paper to the 49th AIAA Aerospace Sciences Meeting
,
Orlando, FL
.
108.
Ferrar
,
A. M.
,
O'Brien
,
W. F.
,
Ng
,
W. F.
,
Florea
,
R. V.
, and
Arend
,
D. J.
,
2009
,
Active Control of Flow in Serpentine Inlets for Blended Wing-Body Aircraft
,
AIAA 2009-4901.
109.
Florea
,
R. V.
,
Reba
,
R.
, and
VanSlooten
,
P. R.
,
2009
, Preliminary Design for Embedded Engine Systems, AIAA 2009-1131.
110.
Arend
,
D. J.
,
Wolter
,
J. D.
,
Hirt
,
S. M.
,
Provenza
,
A. J.
,
Cousins
,
W. T.
,
Hardin
,
L. W.
, and
Sharma
,
O. P.
,
2017
, “
Experimental Evaluation of the Performance and Operability of a Large-Scale Boundary Layer Ingesting Propulsor for Highly Efficient Subsonic Cruise Aircraft
,”
53rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Atlanta, Georgia
, AIAA-2017-5041.
111.
Wolter
,
J. D.
,
Arend
,
D. J.
, and
Hirt
,
S. M.
,
2017
, “
Development of a Rotating Rake Array for Boundary-Layer-Ingesting Fan-Stage Measurements
,”
53rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Atlanta, Georgia
, AIAA-2017-4636.
112.
Hardin
,
L. W.
,
Cousins
,
W. T.
,
Wolter
,
J. D.
,
Arend
,
D. J.
, and
Hirt
,
S. M.
,
2018
, “
Data Analysis Techniques for Fan Performance in Highly-Distorted Flows From Boundary Layer Ingesting Inlets
,”
56th Aerospace Sciences Meeting
,
Orlando, Fl
.
113.
Hirt
,
S.
,
Wolter
,
J. D.
,
Arend
,
D. J.
,
Hearn
,
T. A.
,
Hardin
,
L. W.
, and
Gazzaniga
,
J. A.
,
2018
, “
Performance Calculations for
a
Boundary-Layer-Ingesting Fan Stage From Sparse Measurements
,”
2018 AIAA Aerospace Sciences Meeting
, AIAA SciTech Forum (AIAA 2018-1889).
You do not currently have access to this content.