Abstract

The successful application of eddy resolving simulations to most areas of a modern gas turbine aeroengine is considered. A coherent modeling framework is presented to address coupling challenges. A flow classification is also given. The extensive results presented are shown to be promising but many challenges remain. In the short term, the use of eddy resolving simulations should see greater use in Reynolds-averaged Navier–Stokes (RANS) and lower-order model calibration/development—this is starting to happen already. Ideally, in the near future, RANS, large eddy simulation (LES), and test should work in harmony. It is advocated that currently, certain costly engineering design problems can be avoided or understood using scale resolving simulations.

References

References
1.
Tucker
,
P. G.
,
2013
,
Unsteady Computational Fluid Dynamics in Aeronautics
,
Springer
,
New York
.
2.
de Laborderie
,
J.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2017
, “
Analysis of a High-Pressure Multistage Axial Compressor at Off-Design Conditions With Coarse Large Eddy Simulation
,”
12nd European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Stockholm, Sweden
,
Apr.
, ETC Paper ETC2017-125.
3.
de Laorderie
,
J.
,
Duchaine
,
F.
,
Vermorel
,
O.
,
Gicquel
,
L.
, and
Moreau
,
S.
,
2016
, “
Application of an Overset Grid Method to the Large Eddy Simulation of a High-Speed Multistage Axial Compressor
,”
61st ASME Turbo EXPO
,
Seoul, Korea
,
June
, ASME Paper GT2016-56344.
4.
de Laborderie
,
J.
,
Duchaine
,
F.
,
Vermorel
,
O.
,
Gicquel
,
L.
, and
Moreau
,
S.
,
2020
, “
Wall-Modeled Large-Eddy Simulations of a Multistage High-Pressure Compressor
,”
Flow Turbul. Combust.
,
104
(
2–3
), pp.
725
751
. 10.1007/s10494-019-00094-0
5.
Cao
,
T.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2017
, “
Hierarchical Immersed Boundary Method With Smeared Geometry
,”
AIAA J. Propul. Power
33
(
5
), pp.
1151
1163
10.2514/1.B36190
6.
Tucker
,
P. G.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Jefferson-Loveday
,
R.
,
Tyacke
,
J.
, and
Liu
,
Y.
,
2011
, “
Hybrid LES Approach for Practical Turbomachinery Flows: Part 1—Hierarchy and Example Simulations
,”
ASME J. Turbomach.
,
134
(
2
), p.
021023
. 10.1115/1.4003061
7.
Mayle
,
R.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME Trans. J. Turbomach.
,
113
(
4
), pp.
509
537
. ASME, International Gas Turbine and Aeroengine Congress and Exposition, 36th, Orlando, FL, June 3–6. 10.1115/1.2929110
8.
Bhaskaran
,
R.
,
Jia
,
F.
,
Laskowski
,
G. M.
,
Wang
,
Z. J.
, and
Paliath
,
U.
,
2017
, “
Towards High-Order Large-Eddy Simulation of Aero-Thermal Flows for Turbomachinery Applications
,”
62nd ASME Turbo EXPO
,
Charlotte, NC
,
June
, ASME Paper GT2017-63358.
9.
Lu
,
Y.
,
Liu
,
K.
, and
Dawes
,
W. N.
,
2016
, “
Fast High Order Large Eddy Simulations on Many Core Computing Systems for Turbomachinery
,”
61st ASME Turbo EXPO
,
Seoul, Korea
,
June
, ASME Paper GT2016-57468.
10.
Cassinelli
,
A.
,
Montomoli
,
F.
,
Adami
,
P.
, and
Sherwin
,
S. J.
,
2018
, “
High Fidelity Spectral/HP Element Methods for Turbomachinery
,”
63rd ASME Turbo EXPO
,
Oslo, Norway
,
June
, ASME Paper GT2018-75733.
11.
Garal
,
A.
,
Diosady
,
L. T.
,
Murman
,
S. M.
, and
Madavan
,
N. K.
,
2016
, “
DNS of Low-Pressure Turbine Cascade Flows With Elevated Inflow Turbulence Using a Discontinuous-Galerkin Spectra Element Method
,”
61st ASME Turbo EXPO
,
Seoul, Korea
,
June
, ASME Paper GT2016-56700.
12.
Marty
,
J.
,
Lantos
,
N.
,
Michel
,
B.
, and
Bonneou
,
V.
,
2015
, “
LES and Hybrid RANS/LES Simulations of Turbomachinery Flows Using High Order Methods
,”
60st ASME Turbo EXPO
,
Montreal, Canada
,
June
, ASME Paper GT2015-42134.
13.
Crumpton
,
P. I.
,
Moinier
,
P.
, and
Giles
,
M. B.
,
1997
, “
An Unstructured Algorithm for High Reynolds Number Flows on Highly Stretched Grids
,”
Tenth International Conference on Numerical Methods for Laminar and Turbulent Flow
,
Denver, CO
,
June 5–9
, pp.
561
557
.
14.
Rogers
,
S. E.
,
Kwak
,
D.
, and
Kiris
,
C.
,
1991
, “
Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations
,”
AIAA J.
,
29
(
4
), pp.
603
610
. 10.2514/3.10627
15.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA 92-0439, AIAA 30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, pp.
1
27
.
16.
Tucker
,
P. G.
,
2001
,
Computation of Unsteady Internal Flows
,
Springer
,
New York
.
17.
Oriji
,
U. R.
,
Yang
,
X.
, and
Tucker
,
P. G.
,
2014
, “
Hybrid RANS/ILES for Aero Engine Intake
,”
Proceedings of ASME Turbo Expo 2014 GT2014
,
June 16–20
,
Dusseldorf, Germany
, Paper No. GT2014-26472.
18.
Oriji Ugochukwu
,
R.
,
2014
, “
Numerical Investigation of Intake Flows in Crosswinds
,”
D.Phil. thesis
,
Department of Engineering, Cambridge University
.
19.
Kalsi
,
H. S.
, and
Tucker
,
P. G.
,
2018
, “
Numerical Modelling of Shock Wave Boundary Layer Interactions in Aero-Engine Intakes at Incidence
,”
Proceedings of the ASME 50985; Volume 1: Aircraft Engine; Fans and Blowers; Marine
, p.
V001T01A019
,
June 11
, GT2018-75872.
20.
Kalsi
,
H. S.
,
2018
, “
Numerical Modelling of Shock Wave Boundary Layer Interactions in Aero-Engine Intakes at Incidence
,”
D.Phil. thesis
,
Department of Engineering, Cambridge University
.
21.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
. 10.1017/S0022112010003873
22.
Scillitoe
,
A.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2019
, “
Large Eddy Simulation of Boundary Layer Transition Mechanisms in a Gas-Turbine Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
6
), p.
061008
. 10.1115/1.4042023
23.
Gbadebo
,
S. A.
,
2003
, “
Three-Dimensional Separations in Compressors
,”
Ph.D. thesis
,
University of Cambridge
.
24.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
, 1–35. 10.1063/1.3623274
25.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
. 10.1115/1.4002990
26.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2017
, “
Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor: The Influence of Free-Stream Turbulence Intensity and Endwall Boundary Layer State
,”
ASME J. Turbomach.
,
139
(
2
), p.
021011
.10.1115/1.4034797
27.
Min
,
B.-Y.
,
Joo
,
J.
,
Mendoza
,
J.
,
Lee
,
J.
,
Xia
,
G.
, and
Medic
,
G.
,
2018
, “
Large-Eddy Simulation of Corner Speration in a Compressor Cascade
,”
63nd ASME Turbo Expo
,
Oslo, Norway
,
June
, ASME Paper GT2018-77144.
28.
Tucker
,
P. G.
,
2016
,
Advanced Computational Fluid and Aerodynamics
,
Cambridge University Press
,
Cambridge
.
29.
Tucker
,
P. G.
,
2002
, “
Temporal Behaviour of Flow in Rotating Cavities
,”
Numer. Heat Transfer
,
41
(
6–7
), pp.
611
627
. 10.1080/104077802317418241
30.
Tucker
,
P. G.
, and
Keogh
,
P. S.
,
1996
, “
On the Dynamic Thermal State in a Hydrodynamic Bearing With a Whirling Journal Using CFD Techniques
,”
ASME J. Tribol.
,
118
(
2
), pp.
356
363
. 10.1115/1.2831309
31.
Tyacke
,
J.
,
Tucker
,
P. G.
,
Jefferson-Loveday
,
R.
,
Nagabhushana Rao
,
V.
,
Watson
,
R.
,
Naqavi
,
I.
, and
Yang
,
X.
,
2013
, “
LES for Turbines: Methodologies, Cost and Future Outlooks
,”
ASME J. Turbomach.
,
136
(
6
), p.
061009
. 10.1115/1.4025589
32.
Tyacke
,
J.
, and
Tucker
,
P. G.
,
2015
, “
Large Eddy Simulation of Turbine Internal Cooling Ducts
,”
Comput. Fluids
,
114
, pp.
130
140
. 10.1016/j.compfluid.2015.02.022
33.
Kacker
,
S. C.
, and
Whitelaw
,
J. H.
,
1971
, “
The Turbulence Characteristics of Two-Dimensional Wall-Jet and Wallwake Flows
,”
ASME J. Appl. Mech.
,
38
(
1
), pp.
239
252
. 10.1115/1.3408749
34.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Whitney
,
C. F.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
. 10.1115/1.2103094
35.
Watson
,
R.
, and
Tucker
,
P. G.
,
2016
, “
A Perfectly Parallel Optimisation for Cutback Trailing Edges
,”
AIAA J.
,
54
(
7
), pp.
2051
2060
. 10.2514/1.J053807
36.
Dai
,
Y.
,
Tyacke
,
J.
, and
Tucker
,
P. G.
,
2016
, “
Effect of Labyrinth Seal Configurations on Leakage Performance Using LES
,”
54th AIAA Aerospace Sciences Meeting, AIAA Science and Technology Forum and Exposition
, AIAA Paper No. AIAA-2016-2127.
37.
Domaradzki
,
J. A.
, and
Holm
,
D. D.
,
2001
, “Navier-Stokes-Alpha Model: LES Equations With Nonlinear Dispersion,”
Modern Simulation Strategies for Turbulent Flow
,
BJ
Geurts
, ed.,
ERCOFTAC Bulletin
, 107 (Edwards, Ann Arbor, 2001).
38.
Dai
,
Y.
,
2018
, “
Large Eddy Simulation of Labyrinth Seals and Rib Shapes for Internal Cooling Passages
,”
D.Phil. thesis
,
Department of Engineering, The University of Cambridge
.
39.
Tyacke
,
J.
,
Jefferson-Loveday
,
R.
, and
Tucker
,
P. G.
,
2013
, “
On the Application of LES to Seal Geometries
,”
Flow Turbul. Combust.
,
91
(
4
), pp.
827
848
. 10.1007/s10494-013-9480-x
40.
Zhong
,
B.
, and
Tucker
,
P. G.
,
2004
, “
k-l Based Hybrid LES/RANS Approach and Its Application to Heat Transfer Simulation
,”
Int. J. Numer. Methods Fluids
,
46
(
10
), pp.
983
1005
. 10.1002/fld.782
41.
Arko
,
B. M.
, and
McQuilling
,
M.
,
2013
, “
Computational Study of High-Lift Low-Pressure Turbine Cascade Aerodynamics at Low Reynolds Number
,”
AIAA J. Propul. Power
,
29
(
2
), pp.
446
459
. 10.2514/1.B34576
42.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
,
1999
, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
, pp.
109
153
. 10.1017/S0022112099006205
43.
Cui
,
J.
, and
Tucker
,
P. G.
,
2016
, “
Numerical Study of Purge and Secondary Flows in a Low Pressure Turbine
,”
ASME J. Turbomach.
,
139
(
2
), p.
021007
.10.1115/1.4034684
44.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P. G.
,
2015
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
. 10.1115/1.4031561
45.
Ubald
,
B. N.
,
Tucker
,
P. G.
,
Cui
,
J.
,
Watson
,
R.
, and
Shahpar
,
S.
,
2019
, “
Numerical Analysis of an Instrumented Turbine Blade Cascade
,”
ASME J. Turbomach.
,
14
(
5
), p.
051013
. 10.1115/1.4041935
46.
Yang
,
X.
,
2014
, “
Numerical Investigation of Turbulent Channel Flow Subject to Surface Roughness, Acceleration, and Streamline Curvature
,”
D.Phil. thesis
,
Department of Engineering, Cambridge University
.
47.
Tucker
,
P. G.
,
2013
, “
Trends in Turbomachinery Turbulence Treatments
,”
Prog. Aerospace Sci.
,
63
, pp.
1
32
. 10.1016/j.paerosci.2013.06.001
48.
Ligrani
,
P. M.
, and
Moffat
,
R. J.
,
1986
, “
Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers
,”
J. Fluid Mech.
,
162
(
1
), pp.
69
98
. 10.1017/S0022112086001933
49.
Joo
,
J.
,
Medic
,
G.
, and
Sharma
,
O. P.
,
2017
, “
Large-Eddy Simulation of Roughened NACA65 Compressor Cascade
,”
62nd ASME Turbo EXPO
,
Charlotte, NC
,
June
, ASME Paper GT2017-64889.
50.
Joo
,
J.
,
Medic
,
G.
, and
Sharma
,
O. P.
,
2016
, “
Large-Eddy Simulation Investigation of Roughness on Flow in a Low-Pressure Turbine
,”
61st ASME Turbo EXPO
,
Seoul, Korea
,
June
, ASME Paper GT2016-57912.
51.
Wang
,
Z.-N.
,
Tyacke
,
J.
, and
Tucker
,
P. G.
,
2017
, “
LES-RANS of Installed Ultra-High Bypass-Ratio Coaxial Jet Aeroacoustics With a Finite Span Wing-Flap Geometry and Flight Stream—Part 2: Chevron Nozzle
,”
23rd AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum
, AIAA Paper No. AIAA 2017-3855.
52.
Tyacke
,
J. C.
,
Wang
,
Z.-N.
, and
Tucker
,
P. G.
,
2019
, “
LES-RANS of Installed Ultra-High Bypass-Ratio Coaxial Jet Aeroacoustics With Flight Stream
,”
AIAA J.
,
7
(
3
), pp.
1215
1236
. doi 10.2514/1.J05705
53.
Tyacke
,
J. C.
,
Mahak
,
M.
, and
Tucker
,
P. G.
,
2016
, “
Large Scale, Multi-Fidelity, Multi-Physics, Hybrid RANS-LES of an Installed Aeroengine
,”
AIAA J. Propul. Power
,
32
(
4
), pp.
1
12
. 10.2514/1.B35947
You do not currently have access to this content.