Abstract

Entropy loss is widely used to quantify the efficiency of components in turbomachines, and empirical relations have been developed to estimate the contribution of different mechanisms. However, further analysis is still needed to not only get a deeper insight of the physics but also to more accurately quantify the loss generation caused by different terms. In the present study, the entropy transport equations based on averaged flow quantities are first derived, and the entropy generation process is fully decomposed into several terms representing different physical mechanisms, such as mean viscous dissipation, turbulence production, mean, and turbulent heat flux, etc. This decomposition framework is then applied to high-resolution large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) results of a VKI LS-89 HPT vane, and a detailed quantification of different entropy generation terms is obtained. The results show that the entropy generation caused by mean flow features like mean viscous dissipation and mean heat flux are in close agreement between LES and RANS, indicating that RANS provides an overall good prediction for the mean flow. Furthermore, we find that turbulence production plays an important role in entropy generation as it represents the energy extracted from the mean flow to turbulent fluctuations. However, the difference between RANS and LES results for the turbulence production term is not negligible, particularly in the wake region. This implies that the failure of RANS to predict the correct total loss might be largely caused by errors in capturing the correct turbulence production in the near wake region.

References

References
1.
Bejan
,
A.
,
1978
, “
General Criterion for Rating Heat-Exchanger Performance
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
655
658
. 10.1016/0017-9310(78)90064-9
2.
Bejan
,
A.
,
1980
, “
Second Law Analysis in Heat Transfer
,”
Energy
,
5
(
8–9
), pp.
720
732
. 10.1016/0360-5442(80)90091-2
3.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
4.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME paper No. GT2010-22540
. 10.1115/GT2010-22540
5.
Sciubba
,
E.
,
1997
, “
Calculating Entropy With CFD
,”
ASME Mech. Eng.
,
119
(
10
), pp.
86
88
.
6.
Naterer
,
G. F.
, and
Camberos
,
J. A.
,
2003
, “
Entropy and the Second Law Fluid Flow and Heat Transfer Simulation
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
360
371
. 10.2514/2.6777
7.
Moore
,
J.
, and
Moore
,
J. G.
,
1983
, “
Entropy Production Rates From Viscous Flow Calculations: Part I–A Turbulent Boundary Layer Flow
,”
ASME
Paper No. 83-GT-70
. 10.1115/83-gt-70
8.
Camberos
,
J. A.
,
2001
, “
On the Construction of Entropy Balance Equations for Arbitrary Thermophysical Processes
,”
Proceedings of the 39th AIAA Aerospace Science Meeting
,
Reno, NV
,
January
,
AIAA Paper No. 2001-0815
, p.
0815
.
9.
Adeyinka
,
O. B.
, and
Naterer
,
G. F.
,
2004
, “
Modeling of Entropy Production in Turbulent Flows
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
893
899
. 10.1115/1.1845551
10.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
, “
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
. 10.1115/1.4032435
11.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2018
, “
Identification and Quantification of Losses in a LPT Cascade by POD Applied to LES Data
,”
Int. J. Heat Fluid Flow
,
70
, pp.
28
40
. 10.1016/j.ijheatfluidflow.2018.01.011
12.
Adumitroaie
,
V.
,
Ristorcelli
,
J. R.
, and
Taulbee
,
D. B.
,
1999
, “
Progress in Favré-Reynolds Stress Closures for Compressible Flows
,”
Phys. Fluids
,
11
(
9
), pp.
2696
2719
. 10.1063/1.870130
13.
Poroseva
,
S. V.
,
Colmenares
,
J. D.
, and
Murman
,
S. M.
,
2016
, “
On the Accuracy of RANS Simulations With DNS Data
,”
Phys. Fluids
,
28
(
11
), p.
115102
. 10.1063/1.4966639
14.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bhaskaran
,
R.
,
2016
, “
Investigation of the Accuracy of RANS Models to Predict the Flow Through a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
138
(
12
), p.
121009
. 10.1115/1.4033507
15.
Arts
,
T.
,
Lambertderouvroit
,
M.
, and
Rutherford
,
A. W.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,”
von Karman Institute for Fluids Dynamics
,
Brussels, Belgium
,
Technical Report
.
16.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
High-Fidelity Simulations of a Linear HPT Vane Cascade Subject to Varying Inlet Turbulence
,”
ASME
paper No. GT2017-63079
. 10.1115/gt2017-63079
17.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
18.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines–Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
. 10.1115/1.4028731
19.
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2006
, “
Nonreflecting Zonal Characteristic Boundary Condition for Direct Numerical Simulation of Aerodynamic Sound
,”
AIAA J.
,
44
(
2
), pp.
402
405
. 10.2514/1.19169
20.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
. 10.1016/S0021-9991(03)00090-1
21.
Arnone
,
A.
,
Pacciani
,
R.
, and
Sestini
,
A.
,
1995
, “
Multigrid Computations of Unsteady Rotor-Stator Interaction Using the Navier-Stokes Equations
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
647
652
. 10.1115/1.2817317
22.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
. 10.2514/1.42362
23.
Sandberg
,
R. D.
,
Tan
,
R.
,
Weatheritt
,
J.
,
Ooi
,
A.
,
Haghiri
,
A.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2018
, “
Applying Machine Learnt Explicit Algebraic Stress and Scalar Flux Models to a Fundamental Trailing Edge Slot
,”
ASME J. Turbomach.
,
140
(
10
), p.
101008
. 10.1115/1.4041268
You do not currently have access to this content.