Abstract

Compressor corner stall is a phenomenon difficult to predict with numerical tools but essential to the design of axial compressors. Predictive methods are beneficial early in the design process to understand design and off-design limitations. Prior numerical work using Navier–Stokes computational methods has assessed the prediction capability for corner stall. Reynolds-averaged Navier–Stokes (RANS) simulations using several turbulence models have shown to over-predict the region of corner hub stall where large eddy simulations (LES) and detached eddy simulations (DES) approaches improved the airfoil surface and wake pressure loss prediction. A linear compressor cascade designed and tested at Ecole Centrale de Lyon provides a good benchmark for the evaluation of the accuracy of numerical methods for corner stall. This paper presents results obtained with Lattice-Boltzmann method (LBM) coupled with very large-eddy simulations (VLES) approach of PowerFLOW and compares them with the experimental and numerical work from Ecole Centrale de Lyon. The ability to achieve equivalent accuracy at a lower computational cost compared to LES scale resolving methods can enable multi-stage design and off-design compressor predictions. A methodical approach is taken by first accurately simulating the upstream flow conditions. Geometric trips are modeled upstream on the endwalls to match both the mean and fluctuating inflow boundary layer conditions. These conditions were then applied to the simulation of the linear compressor cascade. The benchline experimental study includes trips on both the pressure and suction of the airfoil. These trips are also included for the current simulation. The significance of capturing both inflow conditions and including trips on the airfoil is assessed. Detailed comparisons are then made to airfoil loading and downstream losses between experiment and previous RANS and LES simulations. LBM-VLES corner stall results of pitchwise averaged total pressure match LES agreement relative to experimental data at 50 times lower computational cost.

References

References
1.
Cumpsty
,
N.
, and
Greitzer
,
E.
,
2004
, “
Idea and Methods of Turbomachinery Aerodynamics: A Historical View
,”
J. Propul. Power.
,
20
(
1
), pp.
15
26
. 10.2514/1.9176
2.
Dong
,
Y.
,
Gallimore
,
S.
, and
Hodson
,
H.
,
1987
, “
Three-Dimensional Flow and Loss Reduction in Axial Compressors
,”
ASME J. Turbomach.
,
109
(
3
), pp.
354
361
. 10.1115/1.3262113
3.
Lei
,
V.-M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
. 10.1115/1.2775492
4.
Ma
,
W.
,
2012
, “
>Experimental Investigation of Corner Stall in a Linear Compressor Cascade. Mechanics of the Fluids
,”
Ph.D. thesis, Ecole Centrale de Lyon
.
5.
Gao
,
F.
,
2014
, “
Advanced Numerical Simulation of Corner Separation in a Linear Compressor Cascade. Mechanics of the Fluids
,”
Ph.D. thesis, Ecole Centrale de Lyon
.
6.
Zambonini
,
G.
,
2016
, “
Unsteady Dynamics of Corner Separation in a Linear Compressor Cascade. Mechanics of the Fluids
,”
Ph.D. thesis, Ecole Centrale de Lyon
.
7.
Gao
,
F.
,
Zambonini
,
G.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Shao
,
L.
,
2015
, “
Unsteady Behavior of Corner Separation in a Compressor Cascade: Large Eddy Simulation and Experimental Study
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
229
(
5
), pp.
508
519
.
ETC2015-262
10.1177/0957650915594314
8.
Xia
,
G.
, and
Medic
,
G.
,
2017
, “
Hybrid RANS/LES Simulation of Corner Stall in a Linear Compressor Cascade
.”
ASME GT 2017-63454
.
9.
Min
,
B.-Y.
,
Joo
,
J.
,
Mendoza
,
J.
,
Lee
,
J.
,
Xia
,
G.
, and
Medic
,
G.
,
2018
, “
Large-Eddy Simulation of Corner Separation in a Compressor Cascade.
ASME GT 2018-77144
.
10.
Simpson
,
R. L.
,
2001
, “
Junction Flows
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
415
443
. 10.1146/annurev.fluid.33.1.415
11.
Chen
,
H.
,
Orszag
,
S.
,
Staroselsky
,
I.
, and
Succi
,
S.
,
2004
, “
Expanded Analogy Between Boltzmann Kinetic Theory of Fluid and Turbulence
,”
J. Fluid Mech.
,
519
(
0
), pp.
307
314
. 10.1017/S0022112004001211
12.
Chen
,
H.
,
Kandasamy
,
S.
,
Orszag
,
S.
,
Shock
,
R.
,
Succi
,
S.
, and
Yakhot
,
V.
,
2003
, “
Extended Boltzmann Kinetic Equation for Turbulent Flows
,”
Science
,
301
(
5633
), pp.
633
636
. 10.1126/science.1085048
13.
Chen
,
H.
,
Texeira
,
C.
, and
Molvig
,
K.
,
1998
, “
Realization of Fluid Boundary Condition Via Discrete Boltzmann Dynamics
,”
Int. J. Modern Phys. C
,
9
(
8
), pp.
1281
1292
. 10.1142/S0129183198001151
14.
Chen
,
H.
,
Chen
,
S.
, and
Matthaeus
,
W. H.
,
1992
, “
Recovery of the Navier-Stokes Equations Using a Lattice-gas Boltzmann Method
,”
Phys. Rev. A.
,
45
(
8
), pp.
R5339
R5342
. 10.1103/PhysRevA.45.R5339
15.
Chen
,
S.
, and
Doolen
,
G.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
. 10.1146/annurev.fluid.30.1.329
16.
Manoha
,
E.
, and
Caruell
,
B.
,
2015
,
Summary of the Lagoon Solutions from the Benchmark problems for Airframe Noise Computations-III Workshop
.
21st AIAA/CEAS Aeroacoustics Conference, AIAA 2015–2846
.
17.
Shan
,
X.
,
Yuan
,
X.-F.
, and
Cheng
,
H.
,
2006
, “
Kinetic Theory Representation of Hydrodynamics: a Way Beyond the Navier Stokes Equation
,”
J. Fluid. Mech.
,
550
(
-1
), pp.
413
441
. 10.1017/S0022112005008153
18.
Zhang
,
R.
,
Shan
,
X.
, and
Chen
,
H.
,
2006
, “
Efficient Kinetic Method for Fluid Simulation Beyond the Navier-Stokes Equation Physical
,”
Rev. E, Am. Phys. Soc.
,
74
(
0
), p.
046703
. 10.1103/PhysRevE.74.046703
19.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier-Stokes Equations
,”
Phys. Rev. Lett.
,
56
(
14
), pp.
1505
1508
. 10.1103/PhysRevLett.56.1505
20.
Bhatnagar
,
P.
,
Gross
,
E.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component System
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
. 10.1103/PhysRev.94.511
21.
Chapman
,
S.
, and
Cowling
,
T.
,
1990
,
The Mathematical Theory of Non-Uniform Gases
,
Cambridge University Press
,
New York
.
22.
Maros
,
A.
,
Bonnal
,
B.
,
Gonzalez-Martino
,
I.
,
Kopriva
,
J.
, and
Polidoro
,
F.
,
2019
, “
Corner Stall Prediction in a Compressor Linear Cascade using very Large Eddy Simulation (VLES) Lattice-Boltzmann Method
.”
ASME GT 2019-90919
.
23.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
, ASME.
You do not currently have access to this content.