Abstract

The prediction of tip leakage flow aerothermal loss plays a crucial role in turbine preliminary design, which strongly affects the turbine performance. A new tip leakage loss model for unshrouded turbine is developed in this paper, considering the compressible flow aerothermal process inside the clearance. By coupling with a parameterized loading distribution model proposed in this work, in which the blade loading can be described by four independent parameters, Zweifel coefficient (Zw), diffusion factor (DF), peak velocity location (PVL), and leading edge acceleration (LEA), the loss model can evaluate the tip leakage loss in aerodynamic design process conveniently and accurately. The proposed models are validated by numerical simulations and the results show that, compared with the other acknowledged loss models, the loss model can reduce the deviations by more than 50%. Based on the models, the effects of blade loading design parameters on tip leakage losses are discussed via analysis of variance (ANOVA). The results show that Zw has the most significant influence. As Zw decreases from 1.0 to 0.7, tip leakage losses can be reduced by about 16%. Under lower Zw conditions, the joint effect of PVL and LEA is remarkable. However, under higher Zw conditions, the joint effect of the DF and PVL is more important.

References

References
1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
2.
Zou
,
Z. P.
,
Liu
,
J. Y.
,
Zhang
,
W. H.
, and
Wang
,
P.
,
2016
, “
Shroud Leakage Flow Models and a Multi-Dimensional Coupling CFD (Computational Fluid Dynamic) Method for Shrouded Turbines
,”
Energy
,
103
, pp.
410
429
. 10.1016/j.energy.2016.02.070
3.
Gao
,
J.
,
Zheng
,
Q.
,
Zhang
,
Z. Y.
, and
Jiang
,
Y. T.
,
2014
, “
Aero-Thermal Performance Improvements of Unshrouded Turbines Through Management of Tip Leakage and Injection Flows
,”
Energy
,
69
, pp.
648
660
. 10.1016/j.energy.2014.03.060
4.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
. 10.1115/1.3262162
5.
Sjolander
,
S. A.
, and
Cao
,
D.
,
1995
, “
Measurements of the Flow in an Idealized Turbine Tip Gap
,”
ASME J. Turbomach.
,
117
(
4
), pp.
578
584
. 10.1115/1.2836571
6.
Dishart
,
P. T.
, and
Moore
,
J.
,
1990
, “
Tip Leakage Losses in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
599
608
. 10.1115/1.2927700
7.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Prediction of Tip Leakage Losses in Axial Turbine
,”
ASME J. Turbomach.
,
114
(
1
), pp.
204
210
. 10.1115/1.2927987
8.
Farokhi
,
S.
,
1988
, “
Analysis of Rotor Tip Clearance Loss in Axial-Flow Turbines
,”
J. Propulsion
,
4
(
5
), pp.
452
457
. 10.2514/3.23087
9.
Zou
,
Z. P.
,
Shao
,
F.
,
Li
,
Y. R.
,
Zhang
,
W. H.
, and
Berglund
,
A.
,
2017
, “
Dominant Flow Structure in the Squealer Tip Gap and Its Impact on Turbine Aerodynamic Performance
,”
Energy
,
138
, pp.
167
184
. 10.1016/j.energy.2017.07.047
10.
Zhou
,
C.
,
2014
, “
Aerothermal Performance of Different Tips in Transonic Turbine Cascade With End-Wall Motion
,”
J. Propuls. Power
,
30
(
5
), pp.
1316
1327
. 10.2514/1.B34963
11.
Zhou
,
C.
,
2015
, “
Effects of Endwall Motion on Thermal Performance of Cavity Tips With Different Squealer Width and Height
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1248
1258
. 10.1016/j.ijheatmasstransfer.2015.07.101
12.
Zhao
,
W.
,
Zhao
,
Q. J.
,
Sui
,
X. M.
, and
Luo
,
W. W.
,
2017
, “
Numerical Investigation on Loss Mechanism and Performance Improvement for a Zero Inlet Swirl Turbine Rotor
,”
ASME Turbo Expo
,
GT2017-63220
.
13.
Zhou
,
K.
, and
Zhou
,
C.
,
2018
, “
Aerodynamic Interaction Between an Incoming Vortex and Tip Leakage Flow in a Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
11
), p.
111004
. 10.1115/1.4041514
14.
Wheeler
,
A. P. S.
,
Korakianitis
,
T.
, and
Banneheke
,
S.
,
2013
, “
Tip-Leakage Losses in Subsonic and Transonic Blade Rows
,”
ASME J. Turbomach.
,
135
(
1
), p.
011029
. 10.1115/1.4006424
15.
Gao
,
J.
,
Zheng
,
Q.
,
Xu
,
T. B.
, and
Dong
,
P.
,
2015
, “
Inlet Conditions Effect on Tip Leakage Vortex Breakdown in Unshrouded Axial Turbines
,”
Energy
,
91
, pp.
255
263
. 10.1016/j.energy.2015.08.065
16.
Gao
,
J.
,
Zheng
,
Q.
,
Dong
,
P.
, and
Fu
,
W. L.
,
2017
, “
Effects of Flow Incidence on Aerothermal Performance of Transonic Blade Tip Clearance Flows
,”
Energy
,
139
, pp.
196
209
. 10.1016/j.energy.2017.07.175
17.
Willinger
,
R.
, and
Haselbacher
,
H.
,
2004
, “
Axial Turbine Tip-Leakage Losses at Off-Design Incidences
,”
ASME Turbo Expo
,
GT2004-53039
.
18.
Zou
,
Z. P.
,
Wang
,
S. T.
,
Liu
,
H. X.
, and
Zhang
,
W. H.
,
2018
,
Axial Turbine Aerodynamics for Aero-Engines: Flow Analysis and Aerodynamics Design
,
Shanghai Jiao Tong University Press
,
Singapore: Springer, Shanghai
.
19.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1951
, “
A Method of Performance Estimation for Axial-Flow Turbines
”,
British ARC, R&M 2974
.
20.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
104
(
1
), pp.
111
119
. 10.1115/1.3227240
21.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
. 10.1243/PIME_PROC_1970_185_048_02
22.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
ASME J. Eng. Gas Turbines Power
,
92
(
3
), pp.
252
256
. 10.1115/1.3445349
23.
Rain
,
D. A.
,
1954
, “
Tip Clearance Flows in Axial Flow Compressors and Pumps
,” Ph.D. thesis,
California Institute of Technology
,
Hydrodynamics and Mechanical Engineering Laboratories Report No. 5
.
24.
Yaras
,
M. I.
,
Zhu
,
Y.
, and
Sjolander
,
S. A.
,
1989
, “
Flow Field in the Tip Gap of a Planar Cascade of Turbine Blades
,”
ASME J. Turbomach.
,
111
(
3
), pp.
276
283
. 10.1115/1.3262266
25.
Shao
,
W. W.
,
Ji
,
L. C.
, and
Cheng
,
R. H.
,
2007
, “
Basic Analysis of Tip Leakage Mixing Loss
,”
ASME Turbo Expo
,
GT2007-27616
.
26.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
P. H.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
, “
Screening, Predicting, and Computer Experiments
,”
Technometrics
,
34
(
1
), pp.
15
25
. 10.2307/1269548
27.
Song
,
L. M.
,
Guo
,
Z. D.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2016
, “
Research on Metamodel-Based Global Design Optimization and Data Mining Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092604
. 10.1115/1.4032653
28.
Song
,
Y. J.
,
Guo
,
Z. D.
,
Song
,
L. M.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2017
, “
Knowledge-Based Aero-Thermal Multi-Disciplinary Design Optimization of a High Temperature Blade
,”
ASME Turbo Expo
,
GT2017-63880
.
29.
Qi
,
L.
,
Zou
,
Z. P.
,
Liu
,
H. X.
, and
Li
,
W.
,
2010
, “
Upstream Wake–Secondary Flow Interactions in the Endwall Region of High-Loaded Turbines
,”
Comput. Fluids
,
39
(
9
), pp.
1575
1584
. 10.1016/j.compfluid.2010.05.010
30.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
. 10.1115/1.4006294
You do not currently have access to this content.