Abstract

Estimating reliably and rapidly the losses of wind turbine annual energy production due to blade surface damage is essential for optimizing maintenance planning and, in the case of leading edge erosion, assessing the need for protective coatings. These requirements prompted the development of the prototype system presented herein, using machine learning, wind turbine engineering codes, and computational fluid dynamics to estimate annual energy production losses due to blade leading edge delamination. The power curve of a turbine with nominal and damaged blade surfaces is determined, respectively, with the open-source FAST and AeroDyn codes of the National Renewable Energy Laboratory, both using the blade element momentum theory for turbine aerodynamics. The loss prediction system is designed to map a given three-dimensional geometry of a damaged blade onto a damaged airfoil database, which, in this study, features 6000+ airfoil geometries, each analyzed with Navier–Stokes computational fluid dynamics over the working range of angles of attack. To avoid lengthy aerodynamic analyses to assess losses due to damages monitored during turbine operation, the airfoil force data of a damaged turbine required by AeroDyn are rapidly obtained using a machine learning method trained using the pre-existing airfoil database. Presented results demonstrate that realistic estimates of the annual energy production loss of a utility-scale offshore turbine due to leading edge delamination are obtained in just a few seconds using a standard desktop computer. This highlights viability and industrial impact of this new technology for managing wind farm energy losses due to blade erosion.

References

1.
3M
,
2011
, “
A 3M Study Is the First to Show the Effects of Erosion on Wind Turbine Efficiency
,” https://www.pressebox.com/pressrelease/3m-deutschland-gmbh/a-3m-study-is-the-first-to-show-the-effects-of-erosion-on-wind-turbine-efficiency/boxid/445007, Accessed May 6, 2019.
2.
Sareen
,
A.
,
Sapre
,
C. A.
, and
Selig
,
M. S.
,
2014
, “
Effects of Leading Edge Erosion on Wind Turbine Blade Performance
,”
Wind Energy
,
17
(
10
), pp.
1531
1542
. 10.1002/we.1649
3.
Khalfallah
,
M. G.
, and
Koliub
,
A. M.
,
2007
, “
Effect of Dust on the Performance of Wind Turbines
,”
Desalination
,
209
(
1–3
), pp.
209
220
. 10.1016/j.desal.2007.04.030
4.
Zanon
,
A.
,
De Gennaro
,
M.
, and
Kuehnelt
,
H.
,
2018
, “
Wind Energy Harnessing of the NREL 5 MW Reference Wind Turbine in Icing Conditions Under Different Operational Strategies
,”
Renewable Energy
,
115
, pp.
760
772
. 10.1016/j.renene.2017.08.076
5.
Jasinski
,
W. J.
,
Noe
,
S. C.
,
Selig
,
M. S.
, and
Bragg
,
M. B.
,
1998
, “
Wind Turbine Performance Under Icing Conditions
,”
ASME J. Sol. Energy. Eng.
,
120
(
1
), pp.
60
65
. 10.1115/1.2888048
6.
Bak
,
C.
,
Andersen
,
P. B.
,
Madsen
,
H. A.
, and
Gaunaa
,
M.
,
2008
, “
Design and Verification of Airfoils Resistant to Surface Contamination and Turbulence Intensity
,”
AIAA paper 2008–7050, 26th AIAA Applied Aerodynamics Conference
,
Honolulu, HI
,
Aug. 18–21
.
7.
Corten
,
G. P.
, and
Veldcamp
,
H. F.
,
2001
, “
Aerodynamics: Insects Can Halve Wind-Turbine Powers
,”
Nat. Brief Commun.
,
412
, pp.
41
42
.
8.
van Rooij
,
R. P. J. O. M.
, and
Timmer
,
W. A.
,
2003
, “
Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils
,”
ASME J. Sol. Energy. Eng.
,
125
(
4
), pp.
468
478
. 10.1115/1.1624614
9.
Somers
,
D. M.
,
2004
, “
The S814 and S815 Airfoils
,”
Technical Report, NREL/SR-500-36292
,
NREL, Golden, CO, USA
.
10.
Fuglsang
,
P.
, and
Bak
,
C.
,
2004
, “
Development of the Risø Wind Turbine Airfoils
,”
Wind Energy
,
7
(
2
), pp.
145
162
. 10.1002/we.117
11.
Schramm
,
M.
,
Rahimi
,
H.
,
Stoevesandt
,
B.
, and
Tamgager
,
K.
,
2017
, “
The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations
,”
Energies
,
10
(
9
), pp.
1
15
. 10.3390/en10091420
12.
OpenCFD Ltd.
,
2019
, “
OpenFOAM – The Open Source Computational Fluid Dynamics (CFD) Toolbox
.” www.openfoam.org, Accessed May 6, 2019.
13.
Jonkman
,
J.
,
2019
, “
FAST: An Aeroelastic Computer-Aided Engineering (CAE) Tool for Horizontal Axis Wind Turbines
.” https://nwtc.nrel.gov/FAST, Accessed May 6, 2019.
14.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
Technical Report NREL/TP-500-38060
,
NREL
,
Golden, CO, USA
.
15.
Troen
,
I.
, and
Petersen
,
E.
,
1989
, “
European Wind Atlas
,”
Technical Report
, ISBN 87-550-1482-8,
RisøNational Laboratoy
,
Roskilde, Denmark
.
16.
Wang
,
Y.
,
Hu
,
R.
, and
Zheng
,
X.
,
2017
, “
Aerodynamic Analysis of An Airfoil with Leading Edge Pitting Erosion
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061002
. 10.1115/1.4037380
17.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence-Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
18.
Somers
,
D. M.
,
1997
, “
Design and Experimental Results for the S809 Airfoil
,”
Technical, Report, NREL/SR-440-6918
,
NREL
,
Golden, CO, USA
.
19.
Giguere
,
P.
, and
Selig
,
M. S.
,
1999
, “
Aerodynamic Effects of Leading-Edge Tape on Airfoils At Low Reynolds Numbers
,”
Wind Energy
,
2
(
3
), pp.
125
136
. 10.1002/(SICI)1099-1824(199907/09)2:3<125::AID-WE23>3.0.CO;2-5
20.
Ansys-Inc
,
2019
, “
Fluent Theory Guide, Release 19.2
.” https://www.ansys.com/Products/Fluids/ANSYS-Fluent, Accessed May 6, 2019.
21.
Heyman
,
G.
,
Jonkman
,
B.
,
Murray
,
R.
,
Damiani
,
R.
, and
Jonkman
,
J.
,
2019
, “
AeroDyn: A Time-Domain Wind and MHK Turbine Aerodynamics Module
.” https://nwtc.nrel.gov/AeroDyn, Accessed May 6, 2019.
22.
Lancaster University
,
2019
, “
High End Computing (HEC)
,” www.lancaster.ac.uk/iss/hec, Accessed May 6, 2019.
23.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables – Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
. 10.1115/1.2184352
24.
Milani
,
P. M.
,
Ling
,
J.
,
Saez-Mischlich
,
G.
,
Bodart
,
J.
, and
Eaton
,
J. K.
,
2018
, “
A Machine Learning Approach for Determining the Turbulent Diffusivity in Film Cooling Flows
,”
ASME J. Turbomach.
,
140
(
2
), p.
021006
. 10.1115/1.4038275
25.
Sandberg
,
R. D.
,
Tan
,
R.
,
Weatheritt
,
J.
,
Ooi
,
A.
,
Haghiri
,
A.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2018
, “
Applying Machine Learning Explicit Algebraic Stress and Scalar Flux Models to a Fundamental Trailing Edge Slot
,”
ASME J. Turbomach.
,
140
(
10
), p.
101008
. 10.1115/1.4041268
26.
Saenz-Auirre
,
A.
,
Fernandez-Gamiz
,
U.
,
Zuluerta
,
E.
,
Ulazia
,
A.
, and
Martinez-Rico
,
J.
,
2019
, “
Optimal Wind Turbine Operation by Artificial Neural Network-Based Active Gourney Flap Flow Control
,”
Sustainability
,
11
(
10
), p.
2809
. 10.3390/su11102809
27.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control Signals Syst.
,
2
(
4
), pp.
303
314
. 10.1007/BF02551274
28.
MacKay
,
D.
,
1992
, “
Bayesian Interpolation
,”
Neural Comput.
,
4
(
3
), pp.
415
447
. 10.1162/neco.1992.4.3.415
29.
Hagan
,
M. T.
, and
Menhaj
,
M.
,
1994
, “
Training Feed-Forward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
. 10.1109/72.329697
30.
Campobasso
,
M. S.
,
Minisci
,
E.
, and
Caboni
,
M.
,
2016
, “
Aerodynamic Design Optimization of Wind Turbine Rotors Under Geometric Uncertainty
,”
Wind Energy
,
19
(
1
), pp.
51
65
. 10.1002/we.1820
31.
Giordano
,
F. R.
,
Fox
,
W. P.
,
Horton
,
S. B.
, and
Weir
,
M. D.
,
2009
, “
A First Course in Mathematical Modeling
,”
Brooks/Cole, 511 Forest Lodge Rd, Pacific Grove, CA
.
You do not currently have access to this content.